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Abstract— One can find in the literature numerous techniques
to reduce noise in Magnetic Resonance Images (MRI). This
paper critically reviews modern de-noising algorithms (Gaus-
sian filter, anisotropic diffusion, wavelet, and non-local mean)
in terms of their efficiency, statistical assumptions, and their
ability to improve brain tumor segmentation results. We will
show that although different techniques do reduce the noise,
many generate artifacts that are incompatible with precise brain
tumor segmentation. We also show that the non-local means
algorithm is the best de-noising technique for brain tumor
segmentation.

I. INTRODUCTION

Magnetic Resonance Images (MRI) are widely used for

diagnosis and the treatment of brain tumors. MRI provide

invaluable information about localization, shape, and size

of tumors without exposing the patient to a high ioniza-

tion radiation as with other modalitie like: CT, PET, or

SPEC. However, during the MRI acquisition process there

are trade-offs between resolution, acquisition speed, and

signal-to-noise ratio (SNR) that affect image quality and

its subsequent analysis. One way to improve the SNR in

MRI is to increase the acquisition time. Although such an

option is not always practical due to technical limitations

and patient comfort. In general, when the acquisition time

is reduced and the temporal resolution is increased, both the

SNR and the contrast are degraded. Noise and low-contrast

in MRI data make it difficult to precisely delineate regions

of interest between tumor and normal brain tissues. Most

segmentation algorithms found in the literature [1] tend to

be very sensitive to noise, intensity inhomogeneities and low-

contrast. For this reason, it is necessary to pre-process MRI

data to reduce noise and to enhance contrast between regions.

There are several algorithms proposed for de-noising MRI

data, some adapted from general image processing methods

while others developed specifically to deal with the noise

in MRI. Some authors [2], [3], [4], argue that MRI should

be treated differently because the noise does not follow the

standard Gaussian assumption, but a more complex Rician

distribution [5]. It is well known that almost all image

processing filters are based on the Gaussian assumption

and do blur discontinuities between regions hence, reducing

contrast. This is the main challenge in de-noising MRI data

for a segmentation application, i.e. to preserve the edges
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and details but at the same time to reduce noise in uniform

regions. There are many algorithms described in the literature

capable of reducing MRI noise and hence improving the

SNR. On the other hand there is no comprehensive review

comparing their abilities at improving the quality of the data

such as high spatial resolution and good contrast, and also

improving segmentation and visualization. One can divide

the MRI de-noising algorithms into four major categories:

Finite Impulse Filters (FIR), Anisotropic Diffusion, Wavelet,

and Non-Local Means (NLM ) algorithms.

This paper is organized as follows, Section II briefly

explains the basic principles of each category. Section III,

describes the experiments carried out to compare the different

algorithms at de-noising MRI data and improving image

quality for brain tumor segmentation. Section III discusses

the results, and finally, Section IV concludes and presents

future research directions.

II. DE-NOISING ALGORITHMS

In this section, we explain the basic principles for three

main algorithms, Anisotropic Diffusion, Wavelets, and Non-

Local Means. In this section we will omit Gaussian filter as

it is trivial.

A. Algorithm Based on Anisotropic Diffusion

Anisotropic diffusion was first introduced by Perona and

Malik [6] as a multi-scale technique to detect edges. The

algorithm is based on an anisotropic diffusion process that

favors smoothing within continuous regions while it avoids

smoothing across boundaries between regions. The filter

is based on a constrained differential diffusion equation

where pre-computed edges are viewed as locations with low

diffusion coefficients. The diffusion equation is:

It = div(c(x, y, t)∇I) = c(x, y, t)△I +∇c · ∇I (1)

The operators div, ∇ and △ are the divergence, the gradient

and the Laplacian operators respectively. I represents an

intensity image while t is the process ordering parameter or

diffusion time. The term c(x, y, t) is a scalar field controlling

the diffusion strength. It has a monotonically decreasing

function that is directly proportional to the initial magnitude

of the gradient △I . At locations with large gradients, where

boundaries are assumed to happen, the initial value of

c(x, y, 0) is close to zero while it is a maximum at locations

with small gradients.
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Perona and Malik propose the following equations to

estimate the values of c(x, y, t):

g(∇I) = exp
(

− (‖∇I‖/K)
2
)

(2)

or

g(∇I) =
(

1 + (‖∇I‖/K)
2
)−1

(3)

where K is a scalar parameter controlling the edge enhance-

ment threshold.

B. Algorithm Based on Wavelet Analysis

Wavelets and multi-resolution analysis are intrinsically

connected. Multi-resolution analysis with wavelets is based

on two operations: dyadic dilations and integer translation

[7]. The Wavelet transform has the advantage of being

adaptable in both time and frequency to discontinuities in the

signal. In the wavelet framework, a signal f(x) is represented

as infinite combinations of a discrete wavelet at different

scales and translations as defined by:

f(x) =

∞
∑

j=−∞

∞
∑

k=−∞

dj,kΨj,k(x). (4)

In Equation (4), j and k are the scale and translation param-

eters respectively. The function Ψj,k(x) is called a mother

wavelet or basis function at scale j with a distinct translation

k. The coefficients dj,k {j, k ∈ Z} called the wavelet or

mixing coefficients of Ψj,k(x) are used to reconstruct f(x).
Each coefficient dj,k is estimated by convolving the signal

f(x) with the mother wavelet function Ψj,k(x):

dj,k =

∫ +∞

−∞

f(x)Ψj,k(x)dx = 〈f,Ψj,k(x)〉. (5)

With wavelet analysis, the signal’s energy is distributed

through out the scale-space. De-noising in the wavelet-scale

domain involves thresholding the coefficients dj,k at different

scales and discarding those with non-significant energy that

do not change the signal’s morphology.

C. Algorithm Based on Non-Local Means

The de-noising methods in this category were first intro-

duced by Buades, Coll, and Morel [8]. In principle, these

algorithms estimate the true value at pixel i from the mean

of all the values from non-local pixels or voxels whose

neighborhoods are similar to the neighborhood of i. Given

a discrete image υ = {υ(i) | i ∈ I}, the estimated value

NL[υ](i) is computed as a weighted average of all the pixels

j in the image:

NL[υ](i) =
∑

j∈I

w(i, j)υ(j) (6)

In Equation (6), each w(i, j) is a weight that depends on the

similitude metric between grey levels of the neighborhoods

around pixels i and j. The similitude between two neigh-

borhoods is estimated using a Gaussian weighted Euclidian

distance.

III. EXPERIMENTS AND RESULTS

The comparison among methods presented in this section

was performed on twenty simulated T1-MRIs. This set

of images were generated using the brain MRI simulator,

BrainWeb [9]. We also used ten real MRIs containing brain

tumors to see the effect of the filters on tumor segmenta-

tion. These MR images were provided by the Brain Tumor

Analysis Project [10], a joint project between the Cross

Cancer Institute and the Computing Science Department at

University of Alberta, Canada. We compared six algorithms

from the four categories: Gradient anisotropic diffusion algo-

rithm implemented by Gerig et al. [11], curvature anisotropic

diffusion implemented in the ITK library, an open-source,

cross-platform image processing library that provides soft-

ware developers tools for image processing [12], Nowak’s

method based on wavelet [2], the original non-local means

algorithm proposed by Buades et al. [8], the unbiased non-

local means algorithm proposed by Manjón et al. [3], and

finally, a simple Gaussian filter as a reference.

A. Evaluation for Synthetic MRIs

The brain MRI simulator in [9] allows the user to generate

synthetic MR brain images with different modalities, levels

of noise, slice thickness, and non-uniformity contents. We

first generated a complete volume without noise as our

reference. This reference volume contains 20 slices of 5 mm.

thick and it is generated with ”Inversion Recovery” (IR) scan

technique to generate slices similar to the real MRIs data that

we also used in our evaluation. Each 2-D image is corrupted

with Rician-noise for ten different values of variance σi in

the range between [2, 20]. We compared the performance of

the different algorithms in the least-square sense using the

Root-Mean-Square Error (RMSE), Equation (7):

RMSE =
√

(υo − υf )2 (7)

where υo is the noise-free image and υf is the smoothed

image. Figure (1a) and Figure (1b) illustrate the perfor-

mances of each algorithm. The horizontal axis in each figure

represents the noise variance σ while the vertical axis is

the logarithm of average RMSE values obtained for each

method over the set of twenty MR images. Figure (1a)

shows that Nowak’s method had the worst performance of all

methods tested. The two anisotropic diffusion algorithms and

the Gaussian filter showed similar performance at different

noise levels. Figure (1b) depicts the performance of the

two non-local mean algorithms and the Gaussian filter. The

classical non-local means version performance is similar to

the Gaussian filter, while Manjón’s variant outperformed both

the classical non-local means and the Gaussian filter.

Figure (2) shows de-noised slices. Figure (2a) is a syn-

thetic MRI slice without noise, Figure (2b) is the same slice

with noise at level σ = 16 and the remaining subfigures

are the results obtained after applying each of the de-noising

algorithms.
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Fig. 1: Performance comparisons at de-noising the synthetic

images.

(a) Noise-free (b) Noise σ = 16 (c) Gaussian (d) Nowak

(e) Anisotropic (f) Curvature (g) NLM (h) Manjón

Fig. 2: Visual comparison for the various de-noising algo-

rithms.

B. Evaluation for Real MRI Images

Next, we used Real MRI data to evaluate the algorithms

performance for segmenting brain tumors. For this purpose,

we used expert’s manual tumor segmentation as references.

The MRI segmentation was performed using the Confidence

Connected Segmentation (CCS) algorithm in the ITK library

[12]. First, we segmented the tumor on each unfiltered

image in order to establish a performance baseline. We

then performed the same segmentation after the image were

processed by the six de-noising algorithms mentioned in

Section III-A. The segmentation algorithm is tuned by the

parameter fmult that controls the inclusion of new pixels

in the segmented area. Equation (8) shows the inclusion

criterion:

υ(X) ∈ [m− σfmult,m+ σfmult] (8)

where υ(X) is an image, X is the position of the neigh-

boring pixel under consideration for inclusion in the current

region, σ is the local neighborhood intensity values standard

deviation. Equation (8) considers the standard deviation of a

circular region around the mean of the current neighborhood.

Neighboring pixels whose intensity values fall inside the

range are accepted and are included to be part of the region.

Then, both the mean and the standard deviation are updated

after each iteration until no more pixels are available or the

maximum number of iterations is reached [12]. The accuracy

of each segmentation was evaluated using the Dice Similarity

Coefficient (DSC), which measures the coincidence between

two segmented regions [13]. Let two binary segmentations,

G(x, y) and R(x, y) of an image υ, be the goal and resulting

segmentations, the DSC is calculated as:

DSC(R,G) =
2P{(R(x, y) = 1)

⋂

(G(x, y) = 1)}

P (R(x, y) = 1) + P (G(x, y) = 1)
(9)

where R(x, y) = 1 and G(x, y) = 1 represents the pixels

inside of the target segmented areas in the two respective

segmentations, in our case the target area is a tumor. The

function P represents the segmentation probability.

We applied an ANOVA analysis within-subjects in order

to determine if the segmentation results after de-noising are

better than those without filtering. Our alternative hypothesis

is that there is a difference between at least one of the

segmentation results obtained after de-noising with one of

the de-noising methods versus the results obtained without

pre-processing. We considered two factors in the analysis:

de-noising methods and the segmentation parameter fmult.

Ten real images were smoothed with the six de-noising algo-

rithms. Afterwards, we applied the CCS segmentation algo-

rithm with different values of fmult = 2.5, 2.65 and 2.8 over

the noisy and de-noised images. In total, we obtained 210

segmentations: 10 images × 7 methods × 3 values of fmult.

The box-plot at Figure 3 summarizes the resulting means

from the segmentation results for the different algorithms

and the noisy image. We observe that the mean for Nowak’s

method is the least of the means from the de-noising meth-

ods, including the noisy version. When we include Nowak’s

method in the ANOVA analysis for the segmentation results,

the alternative hypothesis was supported at 0.01 levels of

significance with a p0.01 = 0.0013. However, when we

exclude Nowak’s method from the analysis, the alternative

hypothesis is not longer supported with a p0.01 = 0.9643.

Such results indicate that there are no differences in the

segmentation results if we include a previous denoising step

with the exception of Nowak’s method.
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Fig. 3: Segmentation performance box-plot for each filtering

method.

C. Discussion

Figures (1a) and (1b) show that Manjón’s method, based

on the non-local means algorithm and Rician noise distribu-

tion in MRIs, has the best performance. Other papers [3],

[14] and [15], have also shown the superiority of non-local

means over wavelet and anisotropic diffusion methods for de-

noising MRI. Nowak’s method had the worst performance

at de-noising the set of synthetic images in Section III-

A. However, the segmentation results obtained after de-

noising with Nowak’s showed a better contrast than the other

methods. The main point of Nowak’s work is to improve the

contrast in the MRI. It seems that the contrast is improved at

the expense of fidelity with the noise-free MRI. One reason

for Nowak’s low evaluation with the RMSE metric could be

the effect of the Haar wavelet after the image reconstruction.

When zooming on the results from Nowak’s method one can

see that the image is built with squared patches. Figure (1a)

shows that the Gaussian performance closely follows the

performance of both anisotropic algorithms.

Another isssue in MRI is that the edges between different

tissues are not well defined since the contrast is low and con-

tains no strong gradients between regions, thus the methods

based on anisotropic diffusion do not have enough strength

to stop at the boundaries of the regions and their results

are similar to a Gaussian smoothing. These methods did not

improve the quality of the MRI data for tumor segmentation.

Our experiments show that although the methods did remove

the noise from the MRIs, they do not improve the contrast

and do not correct the inhomogeneities on the images enough

to allow the region-growing based segmentation algorithms

to stop when they should. Additionally, as Figure (2) shows,

there are fine details and some edges lost in the de-noised

images. Nowak’s method improved the contrast of the im-

ages, however the segmentation has a hard time dealing with

the small squared patches generated by the Haar wavelet on

the image regions.

IV. CONCLUSION

The presence of noise and low-contrast in MRI make it

difficult to perform visual inspections and computer-aided

analysis of the images. In this work, we have evaluated

the performance of the best algorithms proposed in the

literature at de-noising MRI and at improving the quality

of the data for brain tumor segmentation. We found that

many of those algorithms do reduce noise without too much

apparent artifacts, but our results show that they still blur

the boundaries of the tissues, thus, the results of growing-

region based segmentation algorithms are not improved after

de-noising.

As future work, we will analyze if reducing noise on

volumetric data, instead of slice-by-slice could improve the

noise estimation and provide more information that allow

us to reduce the noise and preserve the structure of the

surfaces. Volumetric data provide redundant information for

each voxel that can be used for a better discrimination of the

noise. We will also study different methods to estimate the

noise in the images.The blurring effect of the methods may

be due to a poor estimation of the noise parameter on MRI.
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