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Abstract—We describe a novel approach for screening 

retinal imagery to detect evidence of abnormalities. In this 
paper, we focus our efforts on age-related macular 
degeneration (AMD), a pathology that may often go undetected 
in the early or intermediate stages, and can lead to a 
neovascular form often resulting in blindness, if untreated.  
Our strategy for retinal anomaly detection is to employ a single 
class classifier applied to fundus imagery. We use a 
multiresolution locally-adaptive scheme that identifies both 
normal and anomalous regions within the retina. We do this by 
using a hybrid parametric/non-parametric characterization of 
the support of the probability distribution of normal retinal 
tissue in color and intensity feature space. We apply this 
approach to screen for evidence of AMD on a dataset of 66  
healthy and pathological cases and found a detection sensitivity 
and specificity of 95% and 96%. 

 
I. RELEVANCE 

 
We present an approach for automatically screening 

patients for evidence of retinal abnormalities. Among all 
pathologies, this paper is particularly focused on the case of 
AMD because of its prevalence and its clinical relevance: 
AMD is the leading cause of blindness in the US [1] and 
throughout much of the western world. 

The advanced stage of AMD usually manifests itself by 
the development of choroidal neovascularization (CNV) 
which can lead to severely impaired central vision, 
impacting activities such as reading, driving, or face 
recognition [2]. In the United States alone, approximately 
200,000 individuals over the age of 50 develop the advanced 
stage of AMD each year.  Left untreated, approximately 
70% of these cases develop substantial vision loss within 2 
years in one eye [3], while over the next 5 years, 
approximately half of those who develop the advanced stage 
in one eye will develop the advanced stage in both eyes [1].  
      A major advance in the treatment of CNV in AMD uses 
anti-vascular endothelial growth factor (VEGF).   

 
Manuscript received March 26, 2011.  
P. Burlina is with The Johns Hopkins University Applied Physics 

Laboratory, Laurel, MD 20723, USA, and The Johns Hopkins University, 
Department of Computer Science, Baltimore, MD, USA. e-mail  
philippe.burlina@jhuapl.edu 

D. E. Freund is with The Johns Hopkins University Applied Physics 
Laboratory, Laurel, MD 20723, USA. e-mail david.freund@jhuapl.edu. 

B. Dupas is with Hôpital Lariboisière, Service d’Ophtalmologie. 
e-mail benedicte.dupas@gmail.com  
     N. Bressler is with The Johns Hopkins University School of Medicine 
Wilmer Eye Institute . e-mail nbressler@jhmi.edu 

 
Recent clinical trials with anti-VEGF have demonstrated 
promise for mitigating the advance of the disease [3]. Thus, 
it is critical to identify in a timely manner those individuals 
most at risk for developing advanced AMD, specifically, 
individuals with the intermediate stage of AMD. 

The main symptom of the intermediate stage AMD is 
the presence of small abnormal formations in the fovea 
called drusen (see Fig.1).  The presence of drusen often 
causes no symptoms.  That is, there is no loss of vision 
associated with the intermediate stage AMD and thus no 
outward signs to warn the individual of its presence [1].  For 
the hundreds of thousands of individuals affected with the 
neovascular form each year, early detection and treatment of 
the advanced neovascular stage could result in stabilization 
of vision at a very useful level for reading, driving, and other 
functions dependent on good central vision [4]. Currently, 
ophthalmoscopy of the retina or evaluation of fundus 
photographs remains the most effective method to identify 
drusen [1]. However, evaluating fundus images manually 
can be a tedious process requiring the expertise of an 
ophthalmologist or extensive training to understand the 
varying patterns recognized by an ophthalmologist. 
Therefore, there is a key need for automated visual 
diagnostic tools that can allow the detection of the 
intermediate stage AMD among a large pool of the at-risk 
population (millions of individuals) and facilitate 
longitudinal studies mapping the advance of the disease, 
thereby enabling timely intervention. 

 
II. PREVIOUS WORK AND CHALLENGES 

 
      A fair amount of work has been devoted to the design of 
automated detectors for specific retinal pathologies such as 
diabetic retinopathy. However, despite its prevalence, much 
less has been done for AMD. Exploitation of digital fundus 
image processing for AMD was first reported by the study in 
[5]. Early AMD detection methods such as the study 
reported in [6] required user intervention. Recently, 
researchers have turned their attention to automated 
approaches: [7] used adaptive equalization and wavelets; [8] 
employed mathematical morphology on angiographic 
images with fluorescein injection; [9] used adaptive 
thresholding; [10] exploited a probabilistic boosting 
approach for the classification of non-homogeneous drusen 
textures; [11] used probabilistic modeling and fuzzy logic; 
[12] employed histogram normalization and adaptive  
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Fig. 1. Examples of pathological cases showing wide variation in 
drusen characteristics. 

segmentation; finally, [13] exploited texture discrimination 
and the intensity  topographical profile. 
      A common route employed by the most promising of the 
previously cited approaches consisted in using a two-class or 
multiclass classifier (drusen vs. vessels vs. retinal 
background tissue vs. other tissue). Because of variations in 
imaging conditions (fundus image quality, illumination, blur, 
background uniformity) and variations in patient specific 
appearance (variability in pigmentation and drusen 
appearance within and across subjects), it is difficult to 
identify stable image features characteristic of drusen that 
can be used to build a robust classifier that will perform 
reliably over a large dataset. 
      Because of this, we explore an alternate route, and 
investigate the use of a one-class classifier: we characterize 
the statistical distribution of ‘normal’ background retinal 
tissue, and search for areas exhibiting abnormalities. The 
salient features of the proposed algorithm are as follows: (a) 
Intensity, color, and gradient information is exploited. (b) A 
hybrid parametric Constant False Alarm Rate (CFAR) 
detector (for the fundus image intensity value) is used in 
conjunction with a non-parametric (adapted to color space 
features) CFAR detector based on Support Vector Machine 
(SVM). (c) The algorithm uses a multiscale and locally 
adaptive approach. In addition, our approach addresses other 
challenges in drusen detection including the presence of a 
background intensity gradient in retinal fundus imagery, the 
presence of various anatomical features (vessels, optical 
nerve, etc) and artifacts (flashes) resulting from specific 
Illumination conditions. To address these issues we develop 
additional processing stages that identify appropriate 
regions for training and testing and eliminate some of these 
spurious features.  
 

III. TECHNICAL APPROACH 
 
(A) Algorithm Description 
      This section describes the basic preprocessing steps. In 
the next section, we review the characterization of the 
support of the probability distribution of normal retinal 
tissue in color and intensity space. 
      Our ultimate goal in this preliminary processing phase is 
to find clean background training regions to train our single 
class classifier, and candidate testing regions on which to 
apply our classifier. Because the training is performed in-
scene, this approach provides the basis of a patient-specific 
abnormality detector which (a) obviates the collection of an 
exhaustive training dataset, and (b) is patient specific, 

making this approach a good candidate for application over 
large datasets. 
      Figure 2 provides a block diagram of the basic 
algorithm.  As shown in the figure, the algorithm has two 
distinct branches. As indicated by the horizontal dashed 
arrow, the right branch relies on results from the left branch, 
which is performed first. Although some of the blocks may 
be basic and self explanatory, for completeness, we will 
discuss each block separately and in turn. 
 

 
Fig. 2. Outline of anomaly detection algorithm. 

 

i) Obtain RGB color fundus image: Color is an important 
visual cue in finding retinal anomalies as well as 
characterizing drusen.  Our algorithm is designed to take 
advantage of this fact.  Thus, the first step is to acquire a red, 
green, blue (RGB) color image of the retina using a standard 
fundus camera.   Although digitized fundus images are 
always square, they sometimes are of different sizes. Thus 
the RGB images are resized to a uniform 1000 x 1000 size. 
ii) Extract the green channel and preprocess: The green 
channel is extracted and used for analysis. 
iii) Create auxiliary masks:  In this step, two logical masks 
are created to minimize the detection of false positives:   A 
“border” mask to eliminate the large circular edge (see 
Fig.1) and all pixels exterior to it and an  “optic nerve” mask 
to eliminate the region occupied by the optic nerve (see 
Fig.1b).  This step depends on a priori knowledge of the 
specifics of the image acquisition process in step i) above.   
For example, if the magnification is such that the entire 
image is comprised of retina (i.e. no edge and no exterior 
black pixels) then clearly no border mask is necessary.   We 
note that the three images shown in Fig.1 are in a standard 
format and are completely representative of all the images 
analyzed in this study. There have been numerous studies 
devoted to accurately locating and sizing the optic nerve in 
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fundus images.  However, we found that using basic image 
processing steps were sufficient for the purpose of 
eliminating the area around the optic nerve in order to avoid 
spurious detections.  In particular, we perform radiometric 
adjustment by doing histogram equalization after excluding 
the top and bottom 1% of intensity histogram.  Next the 
mean pixel value in the image is set to 127 and then this 
image is filtered with a 5 x 5 median filter.   After filtering, 
the image is thresholded, the largest connected component is 
found, and then this area is dilated.         
 iv) Create masks via pyramid decomposition:    In this step, 
two logical masks are created for the ultimate purpose of (a) 
finding ‘clean’ training background areas devoid of blood 
vessels, drusen, and other features or artifacts (thereby 
minimizing outliers) and (b) finding testing areas likely to 
contain abnormalities (thereby minimizing false positive 
detections).  
      We use a multiresolution pyramid decomposition 
process on the green channel image to create the training and 
testing masks.   Specifically, we look for regions of high 
gradient magnitude indicative of high-frequency components 
such as imaging artifacts or vessels.   The gradient 
magnitude is calculated at each level (scale) of the pyramid 
and binary masks are then obtained by thresholding such that 
regions of high gradient magnitude (indicating the presence 
of an edge) are assigned a value of one.   The union of these 
binary images is accumulated at each level of the image 
pyramid, yielding an intermediate binary mask.  
The testing mask is obtained by morphologically closing the 
intermediate binary mask.  The training mask is obtained by 
dilating the intermediate binary mask and then taking the 
logical complement. Note that pixels with a value of one in 
the training mask represent regions with low frequency 
components (i.e. regions devoid of edges and artifacts) and 
presumably correspond to normal retinal tissue.     
v) Convert RGB image to HSV:  The original color fundus 
image is converted from RGB to Hue, Saturation, and Value 
(HSV) space.  The HSV vectors are used for training and 
anomaly detection testing.  
vi) Logically AND HSV image with training & testing 
masks:  The next step is to logically AND the training mask 
with the HSV image and split the subsequent image into 
local sub-images (100x100 windows) for training.  This is to 
provide local adaptation and address the presence of 
smoothly varying gradient intensity often present in fundus 
imagery.   
vii) Use both parametric and non-parametric CFAR 
algorithms to detect anomalies:  Since the H and S space is 
not a Euclidian space, the H and S channels are used for 
training a non-linear non-parametric (i.e. SVM) CFAR 
detector to find anomalies based on color. The value V is 
instead used for training a traditional single-sided CFAR 
detector, to find anomalies based on intensity. The 
traditional CFAR detector is trained on the background V 
value and splits regions into low V (generally low intensity 
corresponding to vessels, or hyper-pigmentations) and high 
V values (corresponding to drusen). Once training is 
complete, the anomaly detector is applied to candidate 
testing regions obtained using the testing mask. The process 

is applied to local 100x100 tiles. Pixels found to be 
anomalous under both CFAR detectors are then combined 
and the image is reconstructed from its sub- windows.  
(B) Characterization of the probability density support 
region of normal retinal tissue  

This section details the anomaly detection. The idea of 
anomaly detection is to characterize the probability 
distribution that explains the training samples exemplifying 
normal retinal tissue. One starts with a training vector set T 
composed of L vectors drawn from an underlying 
probability distribution P of normal background retinal 
tissue pixels:  

 

   
T = xi !R N , i = 1,2,...L{ }.

                   
(1) 

 
For our problem, N equals 2 since xi consist of the Hue (H) 
and Saturation (S) values.  Since we adopt a CFAR 
approach, the support region in feature space of the 
probability distribution P is found by using a constrained 
optimization approach developed in [14],[15]:  this approach 
seeks to construct a support region R in feature space in such 
a way that that the probability that a point x drawn from P 
will have a specified and bounded probability (a false alarm 
rate) to lie outside of R.  As described shortly, this false 
alarm rate will be denoted by a parameter  !.  
      A Gaussian Radial Basis Function (RBF) kernel is used,  
 

             
K(x, y) = exp(! || x ! y ||2 /" 2 ) = #$(x),$(y)%       (2) 

 
in place of the traditional linear inner product !x, y" .  Doing 
so implicitly imparts a specific geometric interpretation to 
the subsequent steps.  In particular, it maps the exemplars in 
T from an N-dimensional input space (here N=2) into an 
infinite-dimensional feature space. In the feature space, the 
exemplars reside on an infinite-dimensional hypersphere of 
unit radius and we then seek a hyperplane defined as 
 

          !w,"(x)# = $                                (3) 

 
which maximally separates the origin from the training 
exemplars in T.  That is, maximizes the distance ρ/||w|| from 
the origin to the separating hyperplane.  Based on this, the 
decision region for testing becomes 
 

                                   
(4) 

 where sgn(.) denotes the sign function. To complete the 
specification of R, a certain fraction, n, of the vectors in T 
are allowed to violate the original constraint that they must 
lie within the half space R.  That is, slack variables,   !i ,  are 
introduced such that the vectors in T are allowed to satisfy:, 
   !w,"(x i )# $ % & 'i , for  !i non-negative. Doing so provides 
some robustness to the incorrect inclusion of outliers such as 
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imaging artifacts during the training mask definition phase 
described earlier.  
      These specifications can be summarized in a constrained 
minimization of a quadratic objective function [14]: 

 

                   
min

w!F ; "!RL ; #!R

1
2

w
2
+

1
$L

"i
i
% & #

                 
(5) 

 
subject to constraints 
 

                           !w,"(x i )# $ % & 'i , with 'i $ 0 .              (6) 

 
Note, when  is small, the penalty imposed on the points 
violating the separating plane increases.  
      To solve this constrained problem, a Lagrangian is 
defined as 
 

    (7) 
 
where the function A is defined by 
 

   
A(w,!,",# ,$,x) = % # i &w,'(x)( % " + !i( )

i
) % !i$i

i
)

 
(8) 

 
Invoking the Kuhn-Tucker conditions [15], it follows that a 
certain number of the Lagrange multipliers, , are non-zero.  
These non-zero multipliers correspond to exemplars that lie 
exactly on the hyperplane boundary of R (the support 
vectors). Taking the first order optimality condition and 
setting the partial derivative of the Lagrangian with respect 
to (w,x,r,a,b) to zero, yields the following properties: 
 

                      
w = ! i"(xi

i
# ) and ! i = 1.

i
#

                      
(9) 

 
Therefore the optimal vector is the weighted average 
(center of mass) of the support vectors. Finally, plugging 
back the last equation, in the definition of R, we get: 
 

   
R = x : ! i K(x i , x) " #

i
$
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&
'
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'

+'
.
             

(10) 

 
The decision region R has a probabilistic interpretation [16] 
if one considers the sum of weighted K(xi,x) as being 
comprised of a mixture of Gaussians and therefore R as 
region resulting from a CFAR detection rule.  
      The next step in the anomaly detection is to find 
anomalies based on V. This step is accomplished by 
adopting an additional CFAR test on the intensity. The 
intensity (i.e. the value, V, in HSV) is assumed Gaussian.  
The mean and variance are computed and a one-sided 
detection region  is defined as 
 

                             
RV = V : |V !V |" T#V{ }.

                 
(11) 

 
Because drusen almost invariably have a higher intensity 
(i.e. V) compared to other anomaly classes,  RV ,will contain 
pixels associated with the drusen.  The final detection region 
is then taken as the intersection of R and RV.  
 

IV. RESULTS  
 

We applied our retinal anomaly detection to the problem of 
screening for intermediate stage AMD (see Figure 3). For 
testing, after approval by The Johns Hopkins University 
School of Medicine’s Institutional Review Board, we 
collected 66 color fundus images from a clinical dataset.  27 
of the images were of a normal (i.e. no drusen) fundus and 
the remaining 39 contained drusen. The decision to classify 
the patient as normal or pathological was based on the 
number or percentage of pixels found to be abnormal and  
 
 

   

   

    
Fig. 3 Example of detection of drusen.  

 
 

presumably drusen. This percentage threshold was kept at 
3% for all our experiments. 
      The images were collected from 38 subjects overall.  Of 
these 38 subjects, most were Caucasian and some were  
Asian or African American subjects whose fundus images 
tend to be darker due to the higher melanin content in the 
retinal pigment epithelium.  The images were acquired with 
a Zeiss Fundus camera FF4 after pupil dilation by the 
Wilmer Eye Institute Photography Department.  A	
  40° field 
of view (FOV) image centered on the macula was used in all 
cases. 
      Of the 38 subjects used, 15 were healthy and 23 were 
diagnosed for various stages of AMD.  The majority of 
AMD diagnosed fundus images were graded as the 
intermediate stage AMD, with some early stage AMD and a 
few advanced cases. In all, the dataset represented 16 unique 
eyes for normal subjects and 24 unique eyes for pathological 
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subjects.  In some instances stereo fundus images were 
obtained, yielding two distinct views of the same eye.  
      The images were classified by experienced graders of 
AMD from the JHU Wilmer Eye Institute who have 
participated in grading AMD for NIH-sponsored trials.  
Based on the ground truth, as determined by the graders, we 
found about 95% sensitivity, 96% specificity, and positive 
predictive value (PPV) equal to 97%, and negative 
predictive value (NPV) of 92%. A comparison with recently 
published methods cited above that were tested on datasets 
of size commensurate with our dataset shows that our 
method exceeds the performance reported by others. 
 

V. CONCLUSION 
 

      A novel hybrid parametric/non-parametric CFAR 
anomaly detector was presented and applied to the detection 
of abnormalities in retinas using fundus imagery.  In this 
paper, we applied the technique to the detection of drusen 
which are indicative of AMD. Early detection of drusen may 
have substantial impact on the prevention of blindness due to 
AMD [4].  
      The results presented here are still preliminary and the 
data set used to test our algorithm was relatively small and 
needs to be increased before definitive conclusions can be 
made regarding the robustness of the method.  Our goals are 
to continue characterizing and refining our algorithm on 
expanding datasets to eventually allow for large-scale 
deployment.  Furthermore, we plan to construct ROC curves 
in order to quantify algorithm performance.   In addition, we 
will expand the algorithm to be applicable to image 
modalities other than standard fundus images (e.g. Optical 
Coherence Tomography (OCT) images). 
       Finally, we emphasize here that the algorithm we have 
presented should be viewed as an anomaly detector.  
Although we have explicitly applied it to the specific 
problem of drusen detection in early or intermediate stage 
AMD, it is not limited to just this application.  It is 
applicable to screening for other retinal pathologies which 
entail the formation of abnormal tissue or bleeding such as 
diabetic retinopathy or geographic atrophy. 
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