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Abstract— This paper introduces SAGE – an algorithm that
uses the spatial clustering of objects to enhance their classifi-
cation. It assumes that discrete objects can be identified and
classified based on their individual appearance, and further that
they tend to appear in spatial clusters (for example, circinate
exudates). The algorithm builds spatial distribution maps for
objects and confounds for a given image, and adjusts individual
object confidence levels to reflect their spatial clustering. SAGE
may be combined with a wide range of object identification
and classification methods; we demonstrate it using a Multi-
Layered Perceptron (MLP) Neural Network and a Support
Vector Machine (SVM) classifier types for both dark and bright
retinal lesions. Using ROC analysis SAGE improves classifier
performance as much as 83%.

I. INTRODUCTION

This paper introduces SAGE (Spatial Augmented classi-

fication using GMM-EM) - an algorithm to augment the

classification of discrete objects in an image by modeling

their spatial clustering; see Fig. 1. The approach is inspired

by the human capacity to exploit contextual cues to help

classify objects [1]. SAGE is used when the requirement

is to locate and identify multiple objects of the same type

that tend to cluster together (for example, retinal lesions).

It assumes that there exist techniques to find candidates

(potential objects) and to estimate the probability that each

is an object of interest based on its individual appearance.

Typically, there is a processing pipeline that finds can-

didates (e.g. by interest point detection or sliding window

application), extracts a set of features reflecting their appear-

ance (this may involve segmentation as an intermediate step),

and uses a classifier to estimate the probabilities. SAGE uses

the candidates’ probability estimates and image positions to

estimate two spatial distribution maps: one for objects of

interest and one for confounds, then updates the candidates’

probability estimates by using these maps. In effect, clusters

of likely objects have upweighted probabilities, whereas

isolated objects are downweighted. SAGE is a novel version

of the Expectation Maximization (EM) algorithm for Gaus-

sian Mixture Models (GMMs), modified to simultaneously

estimate probability distributions for two separate classes.

We apply to and evaluate the algorithm for the identi-

fication of bright and dark retinal lesions and demonstrate

improvements in the classification of individual objects by

taking into account spatial clustering. Retinal lesions tend

to appear in groups due to underlying local pathology (e.g.
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leaky microvasculature), thus, the presence of several high-

probability objects in a region is mutually reinforcing.

This paper makes two main contributions. First, although

spatial clustering is very common in many problem domains,

there seems to be very little published work on algorithms

that exploit the clustering behavior of objects for discrete

object identification; (there are published segmentation meth-

ods exploiting spatial coherency at a pixel level but not

at object level, and others exploiting figurative spatial re-

lationships between visual features corresponding to parts of

objects but not loose relationships between separate objects).

Second, our implementation introduces a novel modification

of GMM-EM to estimate probability density functions in

a multi-class environment (GMM-EM is normally used to

model a single probability density function for unlabeled

data, [2], [3]), and to combine a priori probability estimates

from outside the EM framework with this distribution.

 

(a) (b)

Fig. 1. SAGE correctly identifies clustered/standalone lesion (blue) and
non-lesion (red) objects (a)Partial clusters, (b)Standalone lesion objects

II. RELATED WORK

As noted above, a substantial amount of research has been

reported using spatial proximity in segmentation, at the level

of individual pixels [4], [5], [6], [7], [8] using information

from neighboring pixels. However, these approaches do not

take into account the contextual cues provided by separate le-

sions in the vicinity. Approaches that do consider contextual

information such as ‘convex area’, solidity’ and ‘orientation’,

to classify pixels, show success with clustering data ([6], [9]);

however, they make the assumption that related pixels are

homogenized within a region. In [10] co-occurring signs of

pathology characterize ischemic retinal regions using pixel-

by-pixel comparisons of appearance, temporal and contex-

tual features in an AdaBoost framework. These methods

largely perform pixel-level segmentation, and assume color

homogeneity of objects. They are therefore unsuitable for
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identification of objects with complex appearance (e.g. ob-

jects whose foreground looks similar to the background). In

addition, they segment regions but do not exploit contextual

cues from separate, nearby objects. The constellation model

[11] classifies an object based on its constituent parts. It

identifies a number of visual distinctive object parts assuming

a rigid (figurative) spatial relationship. The main difference

is that SAGE identifies visually similar objects with non-

rigid proximity. Thus, while [11] is suitable for modeling

single objects with a complex composite appearance, SAGE

is suited to modeling multiple objects of similar appearance

that tend to appear in groups.

III. METHOD

In this paper, we apply SAGE to bright and dark retinal

lesion identification. We assume that objects of interest and

confounds are spatially distributed according to two separate,

unknown spatial distributions (in particular, similar objects

are more likely to occur in groups than not), and that both

types are independently drawn from their respective spatial

distributions. SAGE is applied independently to each image,

and so does not model consistency of object positions across

multiple images. We further assume that the appearance

of objects and confounds are each independent of spatial

location and image, given the class. Within the domain

of retinal lesions we utilize maximum likelihood (ML)

classifiers that estimates the class of candidates based on

their appearance alone; these classifiers are typically trained

off-line using a dataset of labeled candidates taken from a

set of training images. For each new image, the candidates

are first located and the ML classifier used to estimated

the probability that each is an object of interest, given the

appearance. Although retinal lesions tend to be either lighter

or darker than the surrounding retinal tissue, there are many

confounds that have similar levels of local contrast. These

can be distinguished from lesions via a more sophisticated

analysis of the color, texture and shape. We therefore use

intensity peak detection to locate candidate lesions, level sets

to segment the potential lesion around the peak [12], extract

appearance features from the segmented area and then use

a classifier to estimate the probability that the candidate is

a lesion based on its local appearance. The 100 candidates

with highest local intensity contrast in an image, and the

lesion probabilities provided by the classifier together with

the location are fed to SAGE to estimate spatial distribution

functions for both lesions and confounds. We can model the

distribution of objects using a GMM, optionally including a

uniform distribution to account for isolated objects when they

do not always occur in groups. Depending on the domain we

may model confounds simply using a uniform distribution or

using both a GMM and uniform.

The model described is a novel augmentation to the

standard GMM-EM algorithm in two important respects:

first, to integrate the probability estimates of the separate

appearance-based classifiers; second, to simultaneously up-

date two mixture models (one for objects, and one for

confounds). The full derivation can be found in [13].

Consider an image with a number of candidate objects. Let

X = {x1..xN} be the set of candidate’s feature vectors, with

xi = {qi,vi} the ith candidate; qi represents the ith candidate’s

spatial position (x,y) in the image and vi represents the ith

candidate’s appearance feature vector. Let ci be an indicator

variable giving the class of the ith candidate where ci = 1

implies that the ith candidate is an object of interest, ci = 0

that it is a confound. We wish to determine the probability

that each candidate is an object, given the observed data,

p(xi) = p(ci = 1|X).
We model the spatial distributions of the lesions and non-

lesions using two mixture models:

p(qi|c = 0,Θ1) =
R

∑
j=1

α j p j(qi|θ j) (1)

p(qi|c = 1,Θ2) =
M

∑
j=R+1

α j p j(qi|θ j) (2)

where p j is a component density parameterized by θ j,

and α j is the corresponding mixing coefficient, such that

∑R
j=1 α j = 1, ∑M

j=R+1 α j = 1, and the set of parameters Θ is

the union of the disjoint subsets Θ1 = {α j,θ j : j ≤ R} and

Θ2 = {α j,θ j : j > R} for the confound and object mixture

models respectively.

We posit the existence of the hidden variable vector, y =
{yi}, i ∈ (1,N), where yi ∈ (1,M) indicates which mixture

component generated the ith data point, and Y denotes the

set of all possible values of y, y∈Y . Thus, with the inclusion

of the hidden variable y our data can be described in its

complete form as z = {x,y}= {q,v,y}.

The representation of yi above is key in allowing us to

use EM-GMM, a method usually associated with modeling

a single unlabeled pdf. The hidden variable identifies the

dominant mixture component of a candidate across the two

distributions; as each component is assigned to a single class

it therefore also implicitly identifies the candidate class. We

can then write the complete data log-likelihood function for

Θ given the dataset and hidden variables as:

lnL (Θ|X,y)=
N

∑
i=1

ln

(

p(vi)

(

M

∑
j=1

δ j,yi
α j p j(q j|θ j) f (v j, j)

))

(3)

where p(vi) is a prior for appearance that disappears in the

optimization as it is identical for either class; δ j,yi
is the

Kronecker delta such that when j = yi this indicates the

component that xi belongs to, and f (v, i) is defined by:

f (v, i) =

{

1−g(v) i ≤ R

g(v) i > R
(4)

where g(v) is the ML appearance-based estimator for p(c =
1|v). This is a key innovation allowing us to integrate

the probability estimate of the separate appearance-based

classifier into the spatial distribution framework. It can be

provided using any suitable probabilistic classifier (we use

an MLP and an SVM) that is trained to distinguish lesions

from non-lesions given vi as an input . The definition of f

3968



above is a second key innovation which allows us to treat

the probability estimates differently for the object and con-

found classes (inverting the object probability to determine

the confound probability), and so treating the two mixture

distributions differently. We begin the EM algorithm with the

form in [14]. We can iteratively estimate the parameters Θt

at iteration t, by maximizing the function:

Q(Θt ,Θt−1)

=
M

∑
j=1

N

∑
i=1

ln(p(vi))p( j|xi,Θ
t−1)

+
M

∑
j=1

N

∑
i=1

ln( f (vi, j)) p( j|xi,Θ
t−1)

+
M

∑
j=1

N

∑
i=1

ln(α j) p( j|xi,Θ
t−1)

+
M

∑
j=1

N

∑
i=1

ln(p j(qi|θ j)) p( j|xi,Θ
t−1)

(5)

And maximize the terms in (5) containing α j and p j(qi|θ j)
independently.

In the E-step, we calculate the values p( j|xi,Θ
t−1), using

the parameter estimates from the previous iteration, thus:

p( j|xi,Θ
t−1) =

p j(qi|Θ
t−1)p( j|vi,Θ

t−1)p(vi)

p(xi|Θt−1)
(6)

Noting that p( j|vi,Θ
t−1) =α j f (vi, j), expanding the denom-

inator p(xi|Θ
t−1) and canceling the common factor p(vi)

from the numerator and denominator, we get:

p( j|xi,Θ
t−1) ∝ α j p j(qi|Θ

t−1) f (vi, j) (7)

The novel inclusion of the term f (vi, j) takes into account

the appearance of the candidate, and whether the mixture

component is a member of the object or confound mixture.

In the M-step, we optimize the mixture component parame-

ters, α j and θ j. To find the expression for α j, we consider the

confound and object components separately. Considering first

the confounds ( j ≤ R), we introduce the Lagrange multiplier

λ , with the constraint ∑R
j=1 α j = 1, and solve the following:

∂

∂α j

[

M

∑
j=1

N

∑
i=1

ln(α j) p( j|xi,Θ
t−1)+λ

(

∑
j

α j −1

)]

= 0

(8)

which yields:

N

∑
i=1

1

α j

p( j|xi,Θ
t−1)+λ = 0 (9)

Multiplying by α j, summing over j ∈ (1,R), and rearranging

we obtain:

λ =−
R

∑
j=1

N

∑
i=1

p( j|xi,Θ
t−1) (10)

and therefore, for j ≤ R:

α j =
∑N

i=1 p( j|xi,Θ
t−1)

∑R
j=1 ∑N

i=1 p( j|xi,Θt−1)
(11)

By a similar derivation, for j > R:

α j =
∑N

i=1 p( j|xi,Θ
t−1)

∑M
j=R+1 ∑N

i=1 p( j|xi,Θt−1)
(12)

With a Gaussian Mixture Model, the parameters are θ j =
{

µ j,Σ j

}

, with µ j the centroid and Σ j the covariance matrix.

The derivation then follows the standard EM-derivation for

GMMs, yielding:

µ t
j =

∑N
i=1 qi p( j|xi,Θ

t−1)

∑N
i=1 p( j|xi,Θt−1)

(13)

Σt
j =

∑N
i=1 p( j|xi,Θ

t−1)(qi −µ t
j)(qi −µ t

j)
T

∑N
i=1 p( j|xi,Θt−1)

(14)

We sometimes use a uniform distribution in the mixture

model for one or other of the classes. The Uniform distri-

bution returns a constant value p j(q j|Θ
t−1) = 1/A in the

E-step, where A is the area of the image in pixels. In

the M-step, the α value of the Uniform distributions are

optimized just as those for the Gaussians. To initialize SAGE

we randomly assign the centroids µ j to elements qi, with

the mixture weights α j given by f (vi, j), normalized, and

a standard ‘reasonably broad’ covariance matrix, and then

use EM to iteratively determine the parameters in the usual

fashion. Once the spatial distribution parameters have been

determined, we can classify the candidates, thus:

p(ci = 1|xi) =
g(vi)p(qi|ci = 1)

g(vi)p(qi|ci = 1)+(1−g(vi))p(qi|ci = 0)
(15)

with the mixture models providing the spatial probability

distribution estimates.

IV. RESULTS

The main contribution of this paper is to use the spatial

distribution of candidates to improve their classification,

augmenting the results obtainable by using their appearance

alone. To evaluate performance, for retinal lesion identifica-

tion, we test SAGE with both bright and dark lesions (Fig. 1).

We use a simple intensity peak detection and local contrast

algorithm to identify 100 candidate lesions per image, a bank

of feature extractors to produce two 96-element appearance

feature vectors, one for red lesions, and one for white lesions.

The 3504 × 2336 resolution retinal images were captured

using an Canon EOS 20D camera. An expert clinician

provided ground truth mark-up for candidates in a training set

of 105 images. This data was used to train two classifiers for

the white and red lesions, using appropriate feature vectors.

For brevity, and as these aspects of the system are not the

focus of this paper, we do not give any further details on this

part of our system.
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TABLE I

CROSS-ENTROPY ERROR COMPARISON.

Lesions MLP SVM SAGE

Bright 102.57 103.63 90.74
Dark 754.61 788.52 299.79

We compare the results gained using the algorithm to those

if we simply use the confidence estimates of the appearance-

based classifier. The performance is evaluated using a test set

of 12 images. These images contain 78 red lesions,and 1122

red non-lesions, and 56 white lesions and 1144 white non-

lesions, provided with a ground truth mark-up by an expert

clinician.

We evaluate SAGE performance using the cross-entropy

error and receiver operating characteristic curves. The cross

entropy is given by (16), where ti is the actual class label for

the ith case in the test set, and yi is the probability estimate

returned by (15) for SAGE, or g(vi) for the NN classifier.

It characterizes the overall error of the probability estimates.

The Receiver Operating Characteristic (ROC) curve demon-

strates the trade-off between sensitivity and specificity as the

classifier decision threshold is adjusted.

E(X|T) =−∑
i

(ti ln(yi)+(1− ti) ln(1− yi)) (16)

Table I shows the cross-entropy error comparison between

the appearance-based classifier and the SAGE algorithm,

indicating a substantial improvement in the probability es-

timates.

Fig. 2 shows the ROC curves comparison of SAGE to the

two classifiers. The area under curve (AUC) improves to as

much as 83% with SAGE when applied to retinal lesions

(α = 0.01, p− value = 0.0002).
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Fig. 2. ROC Comparison: SAGE (Red), MLP (Green) and SVM (Blue)
for: (a) Bright Lesions, (b) Dark Lesions

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

The novel algorithm introduced in this paper makes the

assumption that similar objects occur in groups and if the

object is in a group of similar objects that the grouping

behavior is indicative of the objects’ type. The algorithm

uses EM to optimize mixture distribution models of the

spatial distribution of objects, using an appearance-based

classifier’s probability estimates to form spatial distributions,

and simultaneously updating the probability estimates to

take account of the spatial distribution. We have evaluated

the algorithm for both bright and dark retinal lesions using

two different classifiers and have demonstrated significantly

improved performance for both classifier and lesion types.

B. Future Work

In future work we will investigate other domains where

objects typically cluster spatially in groups (e.g. nesting

birds), consider the influence of occlusion, integrate other

known spatial relationships (e.g. to other objects or features

in the scene), and consider how to model more structured

spatial distributions. We will also consider extending SAGE

to domains where the prior spatial distribution of objects is

non-uniform (e.g. a particular street scene where pedestrians

are usually to be found on pavements).
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