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Abstract— The success of blood glucose automatic regulation
depends on the robustness of the control algorithm used. It
is a difficult task to perform due to the complexity of the
glucose-insulin regulation system. The variety of model existing
reflects the great amount of phenomena involved in the process,
and the inter-patient variability of the parameters represent
another challenge. In this research a High-Order Sliding-Mode
Control is proposed. It is applied to two well known models,
Bergman Minimal Model, and Sorensen Model, to test its
robustness with respect to uncertain dynamics, and patients’
parameter variability. The controller designed based on the
simulations is tested with the specific Bergman Minimal Model
of a diabetic patient whose parameters were identified from an
in vivo assay. To minimize the insulin infusion rate, and avoid
the hypoglycemia risk, the glucose target is a dynamical profile.

I. INTRODUCTION

Diabetes is a disease characterized by abnormally elevated
concentration of blood glucose. To date there is no cure for it.
Some diabetes cases can be treated with oral medication, but
when pancreatic insulin production is impaired, diabetes has
to be treated with exogenous insulin [1]. Insulin infusion via
a wearable pump represents a better alternative. It improves
patient quality of life, but it does not guarantee that patient
remains normoglycemic because closed loop control is not
yet approved in ambulatory systems. Moreover, the risk of
incidental over-medication is high, and can be lethal [2]. It
is important to maintain normoglycemia to reduce or avoid
the long-term complications of this disease.

The glucose-insulin regulatory system is nonlinear and
time variable. The most important parameters, such as in-
sulin resistance, can be temporarily or permanently changed
depending on the personal habits.

Automatic insulin infusion has been the subject of exten-
sive research since 1960, but to date there is no algorithm
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approved by FDA for outpatients use. There are several re-
search publications describing control algorithms for glucose
regulation. Algorithms using methods like PID control [2],
pole placement [3], feed-forward feedback [4], use lineariza-
tion, and, naturally, the best results were obtained when they
were tuned for a specific patient. Parameter identification is
expensive and invasive. Since the system is time varying,
parameter uncertainties are always present, and these kinds
of control are not robust.

High Order Sliding Mode Control (HOSMC) [5] is a
black-box oriented control i.e. it only needs knowledge of
the relative degree [6] of the system and reasonable bounds
of a few expressions. Thus HOSMC is an attractive alternate
approach to blood glucose control. Due to its nonlinearity,
it spans of the target system. Its design does not depend on
parametric or system model uncertainties, which guarantees
the required robustness.

There are a several known mathematical models descri-
bing the glucose-insulin regulatory system. Improved models
involve additional dynamics, like renal excretion, or the
impact of exercise on blood glucose disappearance, which
significantly increases the model order. It is not reasonable to
assure that any model considers all the phenomena involved
in the glucose-insulin regulation system, and the design of a
controller has to be robust with respect to uncertain dynamics
that can be present in reality.

In this research a High-Order Sliding-Mode Control is
designed, and it is tested in two well known mathematical
models, the Bergman Minimal Model (BeM) and Sorensen
Model (SoM), and it robustness with respect to unaccounted
dynamics [7] is tested.

BeM is a nonlinear compartmental model and contains
the fewest number of parameters that describe the glucose-
insulin regulatory system with sufficient accuracy [8].

One of the most complete models is the Sorensen Model
(SoM). It is composed of 24 differential equations and
describes the action of each group of organs, having some
influence on glucose regulation. In particular, it accounts
for the glucagon effect, opposite to the insulin effect, and
the glucose renal excretion, which is a defense mechanism
applied when glucose exceeds a healthy threshold.

The HOSMC is designed and it is fist tested for six
different in silico, three in each model, and its performance
is compared to a PID control described in [9]. A second test
is done on the BeM of an specific diabetic patient from the
Metabolic Diseases Research Unit of the National Medical
Center S-XXI, whose parameters were identified analyzing
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the information of a continuous glucose monitor.

Hypoglycemia could be lethal, a security restrain must be
provided to avoid it. In this work the use of dynamical target
profile is studied.

II. MODELS

A. Bergman Model
Following is the Bergman Model (BeM):

31 = —p1[B1 — Gy| — B1 By,
By = —paBs + p3[Bs — 1], (1
B3 = —n[33 - Ib] + ’Y[Bl - h]t + ’U,(t)

Here B;, B2 and B3 are plasma glucose concentration, the
insulin influence on glucose concentration reduction, and
insulin concentration in plasma respectively. The control
input u(t) represents the insulin infusion rate, p; is the
insulin-independent glucose-utilization rate, ps is the rate of
decrease of the tissue glucose uptake ability, p3 is the insulin-
dependent increase of the glucose uptake ability. The term
~[B1 — h]t represents the pancreatic insulin secretion after
a meal intake at ¢ = 0. According with [10] the parameters
p1 and vy are assumed to be zero in order to represent the
dynamic of this disease. The parameter n is the first order
decay rate for insulin in blood. The parameters to simulate
the BeM in silico patients where obtain from [11].

TABLE I
BERGMAN MINIMAL MODEL PARAMETERS

Variable BeM1 BeM2 BeM3 Units
D1 0 0 0 1/min
P2 0.02 0.0072 0.0142 1/min
P3 5.3z107%  2.1621076  9.942107%  mil/uUmin?
n 0.3 0.2465 0.2814 1/min

The relative degree r is defined as the order of the total
time derivative of o where the input variable u explicitly
appears for the first time [6]. Thus, calculating

B® = ¢5(B,t) — psBru(t) ®)

where

op(B,t) =

Bi[—p1(p} + 3psly) — psly(p2 + n) — p3y[(B1 — h) "]

+Bs[—pi(1 4 Gy) + p1p2(2Gy, — 1) + 2D(p1 + p2)]

+Bs3[—2p3(p1 + D)] + By Ba[—(p1 + p2)? — 3p3 1]

+B1Bs[ps(3p1 + p2 + n)] + B1B3[—3(p1 + p2)]

+B3(mGy + D) + 3p3 B1 B2 By — B1Bj

+D + (p1Gy + D) (pi + 2p31,) )
shows that the relative degree BeM is 3.

B. Sorensen Model

SoM is a physiological model with tissue and organs
compartments, 8 for glucose and 7 for insulin. It was
developed writing the mass balance equation accounting for
blood flow, the exchange between the compartments and
metabolic processes causing addition or removal of glucose,
insulin and glucagon [12]. SoM is a non-linear model of
relative degree five. The original model and the detailed
explanation of parameters can be found in [12]. In order to
get a form comparable with BeM, SoM could be rewritten
as

. 1
S1 = W(—fo& + Q% Sy + S7 — Frpav)
H

. 1
Sy = W(Qﬁsl + Q8Ss — QY S + fucpSs — fucuSs)
L

: 1
S3 = —(2tanh(0.555) — S3)
T1

1

g, — &
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: 1
Sg = —(1.21 — 1.14 tanh[1.66(SY — 0.89)] — Ss)
1

Sy = QIBjB + er(jK + Q{DI.PV

Sio = %(55 — S10)
Vé

. 1
Si1 = A (Fpcr — FrcooST)
c

The upper index N means the normal value of the corres-
ponding variable.

To simulate the SoM in silico patients the parameters
were obtained from [12], but the parameters that describe
patient metabolic profile were significantly changed in order
to have patients with the same physiology, but different
disease characteristics (Table III).

III. HOSM CONTROLLER

Quasi Continuous High-Order Sliding-Mode Control (QC-
HOSMC) [13], belongs to a family of Homogeneous High
Order Controllers [14], these kind of controllers are robust
with respect to fast unaccounted dynamics, parameter, and
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TABLE I
SORENSEN MODEL STATE SPACE VARIABLES

Variable Description Units
S1 Glucose in blood mg/dl
So Glucose in liver circulation mg/dl
S3 Hepatic glucose uptake mg/dl
Sa Insulin in liver circulation mg/dl
Sy Insulin in blood mg/dl
Se Glucose in gut circulation mg/dl
S7 Glucose in kidney, periphery and brain circulation  mg/dl
Ss Hepatic glucose production mg/dl
So Insulin in kidney, brain an periphery circulation mU/l
S10 Insulin in gut circulation mU/l
S11 Glucagon secretion pg/ml

TABLE III

SOM in silico PATIENTS METABOLIC PORTRAIT

Variable  Patient 5  Patient 4  Patient 6 Units

Fpgu 70 70 70 mg/min
Frecu 10 5 15 mg/min
Raau 20 10 11 mg/min
FE., 35 20.5 11 mg/min
F%GP 155 123.5 200 mg/mm
Fiou 20 10 10 mg/min

relative degree uncertainties [7]. QC-HOSMC was chosen
in this work because it produces less chattering than other
HOSMC, like Nested-HOSMC.

The main design parameter for an HOSMC is the system’s
relative degree, then QC-HOSMC u, was chosen according to
BeM relative degree 3, which is the minimum. It is important
to remark that all the simulations done in research used the
same QC-HOSMC, with no special retuning for any model.

u = —al5+ Galo] + Blo))V2(6 + @)
Bilo|*2signa)) /(|G| + Ba(|] + Buo|*/3)1/?]

o is defined as the difference between the glucose target
and the glucose measurement. The first and second deriva-
tives of o are calculated using finite differences [15], with
a sample step 6 = 0.2m, consistent with an amperometric
glucose sensor sample time [16]. 31, (2 are the controller
gains.

The glucose target is usually set to a fix level [9], but in
order to minimize the insulin rate, in this work a dynamical
profile is considered as glucose target. It is generated by the
BeM of a nondiabetic person.

IV. SIMULATION EXPERIMENTS

A. Test of the controller on in silico patients

Simulations start at a blood glucose level of 350mg/dl,
representing a postprandial event of a poorly controlled dia-
betic patient. The controller was tested with SoM and BeM,
with no special retuning. For each model three different in
silico patients are tested.

\ Reference

TR SN S S S— e T T—
0 E 100 180 20 250 0 50 100 160 20 250 30
Time (min) Time (min)

Fig. 1. (left) Glucose concentration for BeM , representing a postprandial
event, controlled by a third order QC-HOSMC. There is no hypoglycemia,
and normoglycemia is achieved in acceptable time (< 100min). Controller
gains are the same for the three patients. (right) Insulin dose prescribed by
the controller to achieve normoglycemia. Notice the different dose for each
patient.
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Fig. 2. (left) Glucose concentration for SoM, representing a postprandial
event, controlled by the same third order QC-HOSMC, as BeM. SoM
relative degree is 5, but its practical relative degree is 3. There is no hypo-
glycemia and normoglycemia is achieved in acceptable time (< 100min).
(right) Insulin dose prescribed by the controller to achieve normoglycemia.
Notice the different dose for each patient.
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Fig. 3. (left) Glucose concentration for BeM, representing a postprandial
event, controlled by PID controller. Patients 2 and 3 track the dynamic
reference, but Patient 1 presents a hypoglycemia episode (68mg/dl. (right)
Insulin dose prescribed by the PID controller. The first impulse infuse a
great amount of insulin that can easily lead to a hypoglycemia episode,
there is no maximal insulin infusion limit set in PID controller.
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Fig. 4. (left) Glucose concentration for SoM, representing a postprandial
event, controlled by PID controller. There is no hypoglycemic overshoot,
but no Patient track the dynamic reference. (right) Insulin dose prescribed
by the PID controller.

In fig. 1 (BeM) and fig. 2 (SoM), where QC-HOSMC
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is used to control the glucose concentration, the dynamic
target is reached, in aceptable time. The additional dynamics
considered in SoM did not affect the performance of QC-
HOSMC. It can be seen that in BeM after the basal level
is achieved the model is at the stable equilibrium point;
then no insulin infusion is needed to maintain the basal
concentration. Since SoM considers the effect of basal insulin
in glucose homeostasis, insulin infusion persist after the
basal glucose concentration is reached. The QC-HOSMC
automatically compensates for the additional dynamics of
SoM.

In fig. 3 (BeM) and fig. 4 (SoM), where the PID controller
was used, there was one hypoglycemia episode; the dynamic
target was not reached for any of the in silico patients.
In contrast to other researches PID controller has a better
performance with the dynamic reference rather than when
a fix reference is used. The results were compared to those
of the PID controller the dynamic profile used as a glucose
target minimizes the hypoglycemia risk but did not avoided
hypoglycemia with the PID controller.

B. Test of the controllers on in vivo identified patient (Pal)

As part of our ongoing clinical diabetes research the model
parameters of of a patient (Pal) were identified from in
vivo assay using a continuos blood glucose instrument. Both
controllers were tested for the specific BeM model of this
patient.

Pal is a 65 years old diabetic patient with BMI =
21.22kg/m? using insulin therapy, and perform 1.5 hours
aerobical exercise 5 times per week.

It is seen in table I'V, that p; is not zero as it is consider
for the in silico BeM patients. It means there is an additional
dynamic not considered when the controllers were designed.
It is important to remark that p; is the parameter associated
with the insulin independent glucose uptake that is consider
zero for BeM [10], but in SoM and Pal, has an influence.
In figure 5, it seen the insulin overdose prescribed by PID
controller.

TABLE IV
IDENTIFIED PARAMETERS OF PA1

p1 D2
0.001  0.23

p3 n
63z10~%  0.16

V. CONCLUSIONS

Since the true glucose regulation model is incompletely
defined know and approximate and uncertainty is always
present, an ideal controller is not achievable. High-Order
Sliding-Mode Control offers an optimal control solution be-
cause of insensitivity to changing dynamics, input conditions
and system structure. BeM is the simplest model simulated;
SoM is one of the most complete models, and, therefore,
they are used to test the robustness of the HOSM controller.
The controller has been tested via simulation for 6 in silico
patients and one in vivo identified patient (Pal). The results
demonstrate that the additional dynamics considered in SoM
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Fig. 5.  (left) Glucose concentration for the in vivo identified patient
Pal, representing a postprandial event, controlled by QC-HOSMC and PID
controller. There is no hypoglycemic overshoot for QC-HOSMC despise the
additional dynamic introduced by p1 # 0. (right) The insulin prescribed by
both controllers is confined to the first 50 minutes. The dose prescribed by
PID controller leads to hypoglycemia.

and of Pal modeled as BeM did not affect the controller
performance. The results were compared those of the PID
controller. A dynamic profile used as glucose target, to
minimize the risk of hypoglycemia, but it was not avoided
in the PID controller.
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