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Abstract— This paper is focused on investigating force regu-
lation strategies employed by human central nervous system
(CNS). The mechanism responsible for force control is ex-
tremely important in people’s lives, but not yet well understood.
We formulate the general model of force regulation and identify
several possible control strategies. An experimental approach
is used to determine which of the force control strategies could
actually be used by the CNS. Obtained results suggest that
the force regulation process involves not only the pure force
controller, but also a coupled motion controller, relying on the
internal model of the environment.

I. INTRODUCTION

One’s ability to manipulate fragile objects, to assemble
and disassemble parts and to otherwise exert controlled
forces and motions at the same time is very important in
everyday life. The lives of people with motor impairments
are adversely affected by the loss or reduction of this ability.
However, the underlying control mechanism of such ability
is poorly understood.

Latest investigations have suggested the presence in the
motor control system of separate modules for the control
of motions and forces, consistent with electrophysiological
findings on neural activities in primates’ motor and parietal
cortex [1]–[5]. The majority of studies of the human motor
control system are focused on how the movements our
limbs and bodies are produced. Many manipulations we en-
counter everyday, however, deal not only with the execution
of movements, but also the production of well controlled
contact forces. A typical example of such manipulation is
writing on a chalkboard. To successfully complete such task
one needs to apply an appropriate amount of contact force
against the board. Applying too much force would result in
breaking the piece of chalk, whereas too little force would
not produce a trace on the board. The dual nature of force
and position control has been recognized in the field of
robot control and exploited in hybrid position/force control
schemes [6]–[9]. It has been observed that the concept of
optimal impedance plays an important role in control and
stabilization of unstable dynamics by the central nervous
system [10]. Recent research also indicates the existence of
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separate neural control mechanisms of hand movements and
contact forces [11].

In this work these investigations are expanded toward a
deeper understanding of the human ability to concurrently
control arm motions and contact forces.

II. FORCE REGULATION STRATEGIES

The goal of force control system is to produce a certain
amount of contact force in a certain direction with particular
time constraints. In other words, an ideal force controller is
the one which produces the force

F(t) = Fref(t) ∀t, (1)

where F(t) is the force produced by the controller at time
instance t and Fref(t) is the reference force signal.

If we limit ourselves to the problem of force regulation
where Fref = const, as opposed to general force control1,
then in order to satisfy the condition in Eq. (1) perfectly,
an obvious solution from a purely engineering point of view
would be to ensure that the mechanical impedance satisifies
the condition

∂F
∂q

=
∂F
∂q̇

= 0, (2)

where q is a vector of generalized coordinates, e.g. joint
angles. It is known from experiments, however, that the
muscle stiffness increases with muscle activation [12], [13].
A zero mechanical impedance of a muscle can never be
achieved in practice. This is particularly for higher levels of
applied force. To understand how this apparent contradiction
with the condition in Eq. (2) could be resolved by the central
nervous system, let us formulate a general model of force
regulation task.

Consider the interaction between the human arm and some
predictable dynamic environment:

Mq̈(t) + Bq̇(t) + Kq(t) = u(t)− JT (q)F(t), (3)

Meq̈(t) + Beq̇(t) + Keq(t) = JTe (q)F(t), (4)

where M and Me are the inertia matrices, B and Be –
damping matrices, K and Ke – stiffness matrices, J(q)
and Je(q) – Jacobians of the arm and dynamic environ-
ment, respectively, u(t) is the output of the neuromuscular
control system, and F(t) is the contact force. Mechanical
system corresponding to Eqs. (3) and (4) for a simple one-
dimensional case is presented in the form of a diagram in
Fig. 1. Since the environment is predictable, its kinematic

1The goal of regulation problem is to drive the controlled variable to
a constant reference value, whereas control is a more general problem of
following an arbitrary reference signal.
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Fig. 1. Mechanical diagram of the interaction between the human arm and
a predictable dynamic environment: {M, B, K} and {Me, Be, Ke} are the
inertia, damping and stiffness of the arm and the environment, respectively;
ve is the velocity of the environment; F is the interaction force.

Fig. 2. Equivalent electrical diagram for the mechanical system presented in
Fig. 1: vref and Fref are the reference values of velocity and force imposed
by the central nervous system, v is the actual velocity at the interaction
point, v0 is the small “leakage” velocity.

characteristics such as its velocity ve are assumed to be
known. To analyze the system we can transform the mechani-
cal diagram into an electrical diagram describing essentially
the same system (Fig. 2). This transformation is possible
due to equivalence between the mechanical and electrical
parameters made possible by a high degree of similarity
between mathematical equations describing mechanical and
electrical processes. In particular, inertia is equivalent to
inductance, viscosity is equivalent to resistance, and elasticity
is equivalent to capacitance. Velocity of motion can be repre-
sented by electric current, whereas applied force is equivalent
to voltage. Such transformation is motivated by two reasons:
it provides an additional and, possibly, better way to visualize
the mechanical system and, most importantly, it facilitates
our analysis of the original system by allowing us to use a
wide range of tools developed for electrical system analysis.

In our system the velocity ve of the environment is
represented by a current source. Similarly, a current source
is used to represent the reference velocity vref imposed by
the controller in the central nervous system. This quantity

may also be referred to as the motion plan. The reference
force Fref, also imposed by the central nervous system, is
represented by a voltage source. The actual force F and the
actual velocity v at the point of interaction between the arm
and the environment is measured as voltage. The velocity v0,
typically small, is the “leakage” velocity introduced due to
compliance of the environment. For example, in the case
of a human arm interacting with a robotic manipulator,
the velocity v of the point of contact between the arm
and the environment is never precisely equal in practice
to the velocity ve imposed by the robot due to mechanical
compliance attributed to the structural characteristics of the
robot.

Complex impedances Z of the arm and Ze of the environ-
ment can be obtained as

Z = B +
1

jωK
+ jωM, (5)

Ze = Be +
1

jωKe
+ jωMe, (6)

where ω is the radial frequency of the motion and j is the
imaginary unit.

Applying Thévenin’s theorem for electrical circuits [14]
and using the expressions for complex impedances from Eqs.
(5) and (6), we get

F =
Ze

Ze + Z
(Z(ve − vref) + Fref) . (7)

Here the quantities Ze and ve are the properties of the
environment, whereas the quantities Z, vref and Fref are
parameters that can vary. Analysis of Eq. (7) allows us to
see different force regulation strategies to achieve the goal
of F = Fref.

1) Force control. One option is to decrease arm
impedance Z to a very low value. Consider the case
of Z → 0. Then Eq. (7) yields F → Fref.

2) Position control. Another option is to increase the arm
impedance Z to a very high value and to set the motion
plan to vref = ve. In this case the arm is controlled to
compensate the motion of the environment completely.
Here Z →∞, which leads to v → vref − v0, which in
turn leads to F → Fref.

3) Impedance control [15]. In this case the impedance Z
is set to a particular value as a function of environ-
mental velocity ve and reference force Fref: Z = Fref

ve
.

4) Hybrid approaches. An example of such approach
would be a position control approach, where the arm
is controlled to partially compensate the motion of the
environment.

To determine which of these control strategies are used by
the human central nervous system, an experimental approach
is used. Below is the description of the conducted human
studies and their results.

III. METHODS

A. Participants
The pool of participants consisted of 10 volunteers, 7 male

and 3 female between the ages of 21 and 36. The median
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Fig. 3. Experimental setup.

age of participants was 27.5. Every participant reported a
normal or corrected to normal vision, a normal sense of
touch and no known history of neurological disorders. All
participants were right-handed. Everyone who took part in
the experiment was informed about its purpose, procedure,
benefits, possible risks and their rights as subjects. Written
consent was obtained from all participants. The experiment
was approved by the Institutional Review Board of the
Northwestern University.

B. Apparatus

Visual information was displayed on a Dell 1907FPc
19” LCD monitor (Dell Inc., Round Rock, TX) placed
approximately 110 cm from the user. Haptic guidance was
presented via a HapticMaster robotic manipulator (FCS
Control Systems, Netherlands) [16] placed in front of the
subjects. Participants were asked to hold the handle of the
manipulator with their dominant arm and to place their elbow
on an armrest. The height of the armrest was adjusted for
each subject individually, so that the shoulder, elbow and
wrist joints were situated in a horizontal plane. Fig. 3 depicts
the experimental setup.

The software used for this experiment was developed
in C++ using proprietary HapticMaster API (FCS Control
Systems). Visual feedback presented to the user was devel-
oped in OpenGL API (Khronos Group, Beaverton, OR) and
incorporated into the experimental software.

C. Experimental Task

The following axis convention was used in this study:
the x-axis runs toward the participant, the y-axis runs from
participant’s left to his/her right, the z-axis runs from the
bottom to the top. The experimental task in this study was
essentially planar, so z = 0 is assumed throughout this paper.

The task chosen for this experiment was to produce an
isometric force of Fref = 10 N at the handle of the robotic
manipulator in the four principal Cartesian directions in
the horizontal plane. Three-dimensional graphic feedback of

TRIAL 2 PUSH FORWARD

Fig. 4. Visual feedback presented to the user.

the applied force was always provided to the subject. The
position of the handle was not displayed to the subject. Fig.
4 depicts the user’s view of the computer monitor.

Each participant was first introduced to the device and
verbally instructed on the experimental task.

In the first part of a trial the handle was stationary and
the user simply had to match the produced force with the
reference force Fref represented by a circular target on the
screen within a threshold δ, i.e. to produce the force F ∈
(Fref − δ, Fref + δ). The force components along the other
two axes had to stay in the interval (−δ, δ). The threshold
parameter was chosen as δ = 0.1Fref. When the forces in all
three directions were within their respective thresholds, the
force cursor changed its color to green. When the subject was
able to successfully maintain the target force while satisfying
these conditions for 5 seconds, the second part of the trial
commenced. In this part the handle of the manipulator was
being moved sinusoidally about the center position along
either x- or y-axis with the amplitude of 10 cm and frequency
of 0.125 Hz for 25 cycles. The subject was asked to maintain
the same reference force while the movement was under way.
Position perturbations of amplitude of 8 mm and duration
of 300 ms were applied twice per movement cycle at the
points of zero acceleration. A short transition phase of 100
ms was implemented at the start and the end of every
perturbation. It was realized by using as servo command
a sixth-order polynomial constrained by zero velocity and
zero acceleration at both boundaries and zero end jerk [17].
The direction of each perturbation was randomly chosen
from the set {kπ4 |k = 1, 2, . . . , 8}. In total there were 50
perturbations encountered by each participant during every
trial. Most participants were not aware of the existence of
these perturbations due to their low amplitude and extremely
short duration. Others who were aware of it tended to
attribute their effect to “imperfections” of the equipment.
Each subject completed NT = 8 trials consisting of all
possible combinations of four planar principal directions of
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force production and two axes of periodic motion.

IV. DATA ANALYSIS

Force and motion data were collected at a rate of 250 Hz.
Each task performance trial was analyzed individually offline
and the average absolute force error ek during kth movement
cycle was computed as

ek =
1
N

N∑
n=1
n/∈P

|F (n)− Fref(n)|, (8)

where N is the number of data points collected during the
kth cycle, not including the set of data points P collected
when random perturbations were applied. Note that this error
always satisfies ek > 0 with equality if and only if the
actual and desired force trajectories coincide, i.e. F (n) =
Fref(n) ∀n ∈ N .

To obtain a more stable stiffness measure movement cycles
are divided into windows of size Nw = 10. There are 25−
(Nw− 1) such windows in total. Force error measure Ei on
ith window is computed as

Ei =
1
Nw

Nw∑
j=1

ei+j−1, i = 1, 2, . . . , 25− (Nw − 1). (9)

Effectiveness of training is assessed by computing the skill
gain G for each trial as a difference between the force error
measures of the last and first window:

G = E1 − E25−(Nw−1). (10)

Positive skill gain indicates improvement in the subject’s
performance during the trial whereas negative skill gain indi-
cates decline in performance. The greater the difference be-
tween the force error measures of the last and first windows,
the higher the skill gain and the greater the effectiveness of
training for that particular subject.

Two kinds of force error are considered: the force error
in the direction of motion (DoM) and the force error in the
direction of applied force (DoF). For some trials these two
directions would coincide. If the two directions are not the
same, then to calculate the skill gain for the direction of
motion according to Eqs. (8)-(10) we assume that Fref = 0.
We denote the two kinds of skill gain values by GM and GF.

Linear regression is used to estimate the endpoint stiffness
matrix K =

[
Kxx Kxy

Kyx Kyy

]
[18] using the expression

∆Fy =
dFy0
dx

∆x+Kyx∆x, (11)

for Kyx (and analogous expressions to determine the com-
ponents Kxx, Kxy and Kyy), where ∆Fy and ∆x are
differences in force along y-axis and position along x-axis
respectively. These differences are computed at the plateau
phase of the perturbation as

∆Fy = F̄y − Fy0, (12)
∆x = x̄− x0, (13)
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Fig. 5. Perturbation response analysis: velocity (top) and applied force
(bottom) along the y-axis. Red lines indicate the onset and offset of the
perturbation, blue lines indicate the onset and offset of the plateau period
used in stiffness estimation, solid green line indicates the predicted value
of the force in the absence of the perturbation, dashed green lines indicate
the force values Fy0 (top line) and F̄y (bottom line) in Eq. (12).

where a bar is used to denote the average value of the
parameter at the plateau phase of the perturbation over the
time interval of [150, 200] ms after the perturbation onset,
and the subscript “0” is used to denote the predicted values
of the parameter in the absence of the perturbation. The latter
predicted values are computed using the linear interpolation
of the dataset between the onset and offset of the perturbation
(Fig. 5).

Out of four components of the stiffness matrix two are
of particular interest for our analysis: the first one is the
component relating the displacement in the DoM to the force
in the DoM. We call this component stiffness in the DoM
(KM). The second is the component relating the displacement
in the DoM to the force in the DoF. We call this component
stiffness in the DoF (KF). If in some trial the two directions
coincide, then KM = KF in such case.

Stiffness modulation is assessed by calculating for each
trial the difference between the stiffness estimates of the last
and first window:

∆K = K25−(Nw−1) −K1. (14)

This computation is performed for stiffness estimates in both
the DoM and the DoF yielding the values of ∆KM and ∆KF.

To determine the relationship between each skill gain
value and the corresponding change in stiffness a simple
correlation metric was used which took into account only
the sign of each variable:

R =
1
NT

NT∑
i=1

sgn(Gi) sgn(∆Ki), (15)

where Gi and ∆Ki denote the skill gain and stiffness
modulation during the ith trial. Observe that −1 6 R 6 1
in all cases. The choice of this particular correlation metric
in favor of a linear correlation or other popular correlation
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metrics is motivated by an unknown and clearly nonlinear
nature of the relationship between the two variables.

V. RESULTS

Evolution of force error in the DoM and the DoF through-
out a trial for one of the subjects is shown in Fig. 6 (top left).
In this case both errors decreased as the training progressed.
Evolution of the overall stiffness magnitude expressed by
det K [19] and the individual stiffness components is also
presented in Fig. 6.

Values of skill gain and stiffness changes for all subjects
and all trials are shown in Fig. 7 (left and center columns).
The effectiveness of training was assessed using a two-
factor repeated-measures analysis of variance (ANOVA) [20]
technique with the two factors being the start/end of a
training trial and the trial number. ANOVA test revealed a
significant difference between the force error at the start and
the end of a training trial in both the DoM (F (1, 63) = 5.75,
p = 0.040) and the DoF (F (1, 63) = 6.49, p = 0.031)
indicating that the learning during a typical training trial was
effective. The trial number was also a significant factor in the
evolution of the force error (p � 0.001 in both directions)
as the improvement was the more substantial in earlier trials
when the subject was less familiar with the task.

Analysis of stiffness changes suggests that stiffness signif-
icantly increased between the start and the end of a training
trial in both the DoM (F (1, 63) = 25.0, p < 0.001) and
the DoF (F (1, 63) = 23.9, p < 0.001). As in the previous
case, trial number was also a significant factor in stiffness
modulation (p� 0.001 in both directions).

Correlation coefficients for every subject computed ac-
cording to Eq. (15) are presented in Fig. 7 (right col-
umn). The majority of subjects exhibited positive correlation
between their skill gains and changes in stiffness during
training trials. Mean values of correlation coefficients over
the entire subject population were found to be positive (0.325
and 0.150 for the DoM and the DoF respectively).

VI. CONCLUSION

Obtained results indicate that during force regulation in
predictable environments mechanical impedance increases
while force production becomes more stable and the error
in applied force decreases. This finding contradicts the
intuitive solution described by Eq. (2) which suggests that
the impedance of a mechanical system decreases as its force
production improves. On the other hand, this finding is
compatible with the idea that the force regulation process
employed by the central nervous system involves not only
the pure force controller described by Eq. (2), but also a
coupled motion controller. As adaptation to the environment
progresses, internal model [21] of the environment develops.
This model provides the estimates of the kinematic param-
eters of the environment which drive the coupled motion
controller to provide increasingly more accurate feedforward
compensation.
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Fig. 6. Evolution of observed and estimated parameters throughout a sample trial. Top left: average force error, bottom left: stiffness magnitude, remaining
plots: individual components of the stiffness matrix.
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Fig. 7. Skill gain (left column), change in endpoint stiffness (center column) and the correlation between them (right column) for each subject. Both the
direction of motion (top row) and the direction of applied force (bottom row) are analyzed.
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