
  

 

Abstract—Surface electromygraphy (sEMG) provides 

information of the neural drive to the muscle, so muscle force 

estimation by sEMG is of high relevance in biomechanical 

studies and in bionic applications. Even though mean absolute 

value (MAV) has been widely used for sEMG amplitude 

estimation due to the probabilistic nature of sEMG, but it has 

been used without any comprehensive physiological justification. 

A physiologically and biomechanically approximate model for 

the force estimation would enable a clear understanding of the 

relationships between sEMG and the force, and it can be used as 

sEMG amplitude estimation method. We proposed a new sEMG 

amplitude estimation method comprising two procedures: 

MUAP (motor unit action potential) event detection and muscle 

force indication using a biomechanical muscle model. The 

estimation performances were evaluated with nine subjects and 

compared with MAV. The performance (R2) of the proposed 

method (0.94 ± 0.03) outperformed it of MAV (0.90 ± 0.02). The 

method we proposed should be widely applicable to 

quantitatively analysis muscle activities by sEMG. 

I. INTRODUCTION 

HE Surface electromygram (sEMG) from bipolar 

electrodes provides information of the neural drive to the 

muscle, so joint force estimation by sEMG is of high 

relevance in biomechanical studies and in bionic applications. 

Amplitude of the sEMG is frequently used to such 

applications as a measure of muscular effort and as an 

indicator of muscle force. The sEMG during constant force, 

constant-angle, non-fatiguing contractions can be well 

modeled as a Gaussian distribution. This probabilistic nature 

led to root-mean-square (RMS) processing as the standard 

techniques for sEMG amplitude estimation [1]. However, an 

mean absolute value (MAV) has been more widely used, and 

Clancy and Hogan showed that the MAV processor was the 

maximum likelihood estimator of the sEMG amplitude when 

sEMG was Laplacian distributed [2]. This procedure is that 
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the EMG signal is full-wave rectified and averaged in a time 

window. The use of whitening filters before rectification can 

significantly improve the quality of estimates [3].  

MAV necessarily requires rectifying sEMG, however the 

rectification process causes a considerable controversy. Neto 

and Christou recently stated that the rectification impairs the 

neural drive information [4]. Behind this argument, MAV 

with a rectification process has been used due to the 

probabilistic nature of sEMG, without any comprehensive 

physiological justification. Machine learning algorithms, such 

as support vector machine [5] and artificial neural network [6], 

have been used to estimate the joint force by sEMG. Bayesian 

filtering also has been used for the sEMG amplitude 

estimation [7]. However, these approaches have fallen short of 

obtaining physiological meanings and have cryptic internal 

parameters optimized for mapping sEMG to the force. 

In this paper, we proposed a new sEMG amplitude 

estimation method comprising two procedures: MUAP event 

detection and muscle force indication using a biomechanical 

muscle model. A neuromuscular system is composed of inputs 

(excitatory stimulation, MUAPs), outputs (muscle force), and 

black box components, which act transfer function to modify 

the input to create the output. The inputs were created as 

pulses by MUAP event detection by extracting the neural 

drive from sEMG by ascertaining what percentage of the 

available MUs was recruited for the force generation rather 

than ascertaining the exact number of MUs. The rationale 

behind this approach is that the excitation level of the muscle 

is determined by the required percentage of available force 

(maximum voluntary contraction, MVC) rather than the 

absolute force required [8]. Then the next question that arises 

is how to model transfer function including the mechanical 

behavior of the muscle to produce force from the extracted 

pulses. Although muscle force production is an inherently 

nonlinear response of the neuromuscular system, reasonable 

force approximations have been achieved using linear systems 

[9]. A second-order system was used as the transfer function 

based on the frequency response simulation between the 

pulses and the muscle force. This method suggested that the 

pulses reflecting the neural drive to the muscle, and the pulses 

were fed into the biomechanical muscle model for the sEMG 

amplitude estimation. 
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II. MATERIALS AND METHODS 

A. Experimental Setup 

A force sensor (NANO17 SI-50-0.5; ATI Industrial 

Automation, USA) was used to measure forces induced by 

isometric index-finger abduction, and placed within aluminum 

frames. The sEMG from FDI was recorded using the DE-2.1 

sensors (Delsys Inc., USA) and amplified (×1,000) by a 

Bagnoli
TM

 8-channel system (Delsys Inc., USA). Two data 

acquisition boards, NI PCI-6221 and NI PCI-6034 (National 

Instruments, USA), were used to record sEMG and force 

respectively, and installed to a personal computer running on a 

Pentium 4, 2.93 GHz processor.  

Visual Studio 2005 (Microsoft, USA) with the OpenGL 

library was used to guide and visualize the finger force to 

subjects in real time. Matlab R2010a (Mathworks Inc., USA) 

with the Signal Processing Toolbox and the System 

Identification Toolbox was used for the data analysis. The 

force signals were sampled at 1kHz and low pass filtered using 

a finite impulse response (FIR) filter with a corner frequency 

20Hz. The sEMG signals were sampled at 1kHz and band pass 

filtered using a FIR filter with a frequency range between 20 

and 400 Hz [10]. 

B. Experimental Protocol 

Nine (five male and four female) healthy volunteers with a 

mean age of 23.2 years (SD 4.2 years) participated in the 

experiment. The subjects were requested to sit comfortably on 

a chair, and their right forearms were positioned on a table 

beside the chair. The index finger was placed in a custom fit 

ring secured with the force sensor. The isometric maximal 

voluntary contractions (MVCs) of the sEMG and finger force 

were measured prior to the experiment. The subjects were 

instructed to produce a series of five MVCs as rapidly as 

possible. 

 
Fig.  1 Experimental setup. 

 

Two bars were displayed on the monitor representing the 

target and measured forces, and the subjects were instructed to 

match the measured force bar to the target. The force range 

was limited to 20 percent of MVC to avoid muscle fatigue that 

was not considered in the force estimation model. The 

trajectory of the displayed target forces was a linear chirp in 

which the instantaneous frequency varies linearly with time 

(0.2Hz ~ 2Hz). Ten trials for recording sEMG and force were 

carried out for each subject, and sEMG and force were 

normalized to the MVC. 

C. MUAP Event Detection 

When many MUAPs simultaneously occur within close 

proximity, they make a signal with a greater peak, and it 

resembles a larger, single MUAP. The larger number of MUs 

is recruited in generating the muscle force, the larger peak of 

the summed MUAPs appears. Accordingly, the number of 

recruited MUs were approximated as the magnitude of sEMG 

at a peak of the summed MUAP. Also, the moment of the peak 

could approximate the time of the MUAP occurrence. The 

peaks in sEMG were detected by following criterion to detect 

a morphological feature of the peak: 
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xi indicates normalized sEMG signal at time i, and yi 

indicates the extracted pulse. The magnitude of pulses reflects 

what percentage of the available MUs were recruited for the 

force generation, because sEMG was normalized to MVC as 

aforementioned [8]. 

D. Joint Force Estimator Design 

We designed the joint force estimator inspired from the 

mechanical behavior of the muscle. The pulse train was 

analogous to a series of MUAP that results in the muscle 

contraction. In the estimator, the height of the pulse 

represented the relative number of the recruited MUs for the 

contraction among the whole MUs. When a pulse occurred, a 

single twitch force was developed. When another pulse 

occurred and the applied time before the force had completely 

relaxed from the first twitch, a second twitch force was added 

on top of the first twitch. The resultant output can be 

expressed as a mathematical form of a convolution process. 

 

    ( )Y t M t F t 
. (2) 

 

Y(t), M(t), and F(t) were the extracted pulses from sEMG, 

the muscle model, and the estimated forces, respectively. 

The characteristic transfer function was used for the muscle 

model as follows:  
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The parameters for this modeling strategy have 

mathematical definitions. Parameter K is the system gain, ωn 
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is the natural frequency, ζ is the damping ratio, and s is the 

Laplace variable. 

E. Joint Force Estimate Simulation 

For each subject, ten model parameters were optimized 

based on respective ten datasets of the measured force and the 

extracted pulses from sEMG using the Levenberg-Marquardt 

method. Then, each model was tested using the other nine 

datasets that had not been used for the parameter optimization. 

The estimation performance was determined using R
2
: 
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Here ( )f t , ˆ ( )f t , and ( )f t are the measure force, the 

estimated force, and the mean of the measure force at time t, 

respectively. 

III. RESULTS AND DISCUSSION 

A. Estimation Performance 

Figure 2 shows an example of the force estimation using the 

proposed method. The upper plot shows the raw sEMG 

recorded during the experiment, and the middle plot shows the 

extracted pulses from sEMG. In the lower plot, the grey line 

represents the measure force and the black line represents the 

estimated force using the proposed model. The estimation 

performances for each subject were shown in Table I, and the 

overall R
2
 was 0.94 ±0.03. 

TABLE I. ESTIMATE PERFORMANCES FOR EACH SUBJECT (R2, MEAN ± 

STANDARD DEVIATION). 

Subject ID R
2

 

A 0.91±0.02 

B 0.96±0.01 

C 0.92±0.03 

D 0.95±0.01 

E 0.92±0.05 

F 0.94±0.01 

G 0.94±0.04 

H 0.93±0.03 

I 0.94±0.01 

Average 0.94 ±0.03 

 

B. Extracted Muscle Model Parameters 

 The model parameters of equation (3) were extracted; K = 

0.0178 ± 0.0068, Wn = 2.45 ± 0.26, and ζ = 0.90 ± 0.11. The 

extracted model parameters could be compared to the 

model parameters reported in the literature. 

Milner-Brown et al. have conducted an experiment to 

get a frequency response of the FDI muscle by electrical 

stimulation with a needle insertion and force 

measurement between the thumb and index finger [11]. 

They have reported the natural frequency as 2.4Hz and 

damping ratio as 1.2. Bawa and Stein have also reported 

the natural frequency of human soleus muscle as 2Hz 

and the damping ratio as between 0.7 and 1.0 [12]. The 

extracted model parameters for the force estimation 

here were consistent with these values in the literature.  

 
Fig. 2. Experimental results. Units of extracted pulse and force are percent with respect to the MVC. 
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C. Performance Comparison with MAV 

We performed a comparison study to examine whether the 

proposed estimation model was more effective than using 

MAV with a linear regression. For using MAV, there is a 

trade-off between the responsiveness (rapid detection of onset 

or offset of muscle activation) and signal-to-noise ratio (SNR, 

in which the noise is defined as a variability in sEMG by 

Clancy [13]. When we use a large time window for MAV, it 

reduces not only variability in sEMG but also the rapid change, 

which could be intentional muscle activation. In addition, 

since MAV is a casual signal processor, this large time 

window introduces a significant delay. When we use a short 

window to reduce the delay effect, it increases the signal 

variability in sEMG. Therefore, the force estimation 

performance is dependent on the length of the window. 

 We used various window lengths (150 ms ~ 250 ms) for the 

MAV process, and applied a linear regression to each MAV 

result to get the estimated force by MAV. Among the 101 

estimated forces regarding window lengths for each subject, 

we found the best performance, and compared the 

performances with them by the proposed model using a t-test 

with a significance level of p < 0.01. The overall R
2
 of the 

MAV performance was 0.90 ± 0.02. The estimation 

performance with the proposed model was better than it of 

MAV with a linear regression.   

D. Discussion 

The MUAP event detection procedure was simplified about 

the measurement mechanism of sEMG as the linear 

summation of the MUAPs that contribute to the muscle 

contraction. In fact, magnitudes of sEMG are different with 

respect to the depth of individual muscle fibers [14]. However, 

it was highly difficult to localize the depth at which individual 

MUAPs occur from sEMG. Another limitation was that we 

did not consider the amplitude cancellation phenomenon of 

sEMG. The sEMG would underestimate the neural drive sent 

from the spinal cord to muscle as a result of the cancellation of 

positive and negative phases of MUAPs [15]. Even in 

isometric contraction, in addition, the relation between 

driving signal and surface EMG signal is influenced by 

various factors such as effects of fatigue, muscle length, 

velocity of shortening, temperature, or changes in skin 

conductance. There has been no attempt under our 

investigation to consider sophisticated models of such 

relationship, although such models could certainly be 

included for the successful sEMG amplitude estimation. 

IV. CONCLUDING REMARKS 

This paper proposed a new sEMG amplitude estimation 

method that was physiologically and biomechanically 

approximated. Our experimental results showed that the 

proposed model could estimate the joint force from sEMG 

with 0.94 ±0.03 of R
2
, and the performance was greater than it 

of MAV. Successful use of surface electromyography 

inherently depends on high stability and accuracy of the 

estimated signals as a measure of muscular effort and as an 

indicator of muscle force. Although there were remaining 

limitations to be resolved, our method showed great potential 

for the joint force estimation from sEMG and could be utilized 

for many applications such as rehabilitation [16], analysis of 

sports activities [17], and ergonomic design analysis [18]. 
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