
  

  

Abstract—A new, automated way to obtain signatures of 

active motor units (MUs) from high density surface EMG 

recordings during voluntary contractions is presented. It relies 

on clustering of repetitive shapes corresponding to different 

MU action potentials (MUAPs) present. The number of clusters 

and the mean shapes of the MUAPs as observed on the electrode 

grid, are estimated in a fast way without user interaction. The 

algorithm is tested on simulated signals mimicking a small 

muscle. Our results show that at least 8 MUAPs can be reliably 

reconstructed and their MU mean firing frequencies can be 

estimated. 

I. INTRODUCTION 

Electrophysiological measurements of the peripheral 

nervous system such as electromyography (EMG) are often 

used to investigate neuromuscular disorders. Analysis of 

single motor unit action potentials (MUAPs) can be of great 

assistance in assessing the impact of these disorders. Both 

the number of motor units (MUs) and the MUAPs are 

affected by denervation and collateral reinnervation [1]. 

EMG is therefore a helpful tool in the diagnostic process and 

in monitoring disease progression. 

Until recently, single MU analysis has been the sole 

privilege of intramuscular electromyography (iEMG) 

measurements, where a needle or wire electrode is being 

inserted into a muscle [2]. However, the obvious down side 
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is the invasiveness of this approach. 

In the past decade, high-density surface electromyography 

(HD-sEMG) recordings, which employ a grid of multiple 

densely spaced electrodes over a muscle, have been used to 

investigate muscle activity in an alternative, non-invasive 

way, yet providing comparable results [3]. HD-sEMG 

utilizes the fact that the EMG signal measured at the surface 

comes from sources that have different spatial distributions 

and are active in different time instances. This spatio- 

temporal signature is usually unique for each motor unit [4]. 

For many applications the mean spatio-temporal motor unit 

potential amplitude is of interest as the amplitude size and 

the distribution might change for instance in motoneuron 

diseases. In order to address these needs, we propose a 

method to reliably extract mean MUAP shapes of active 

MUs.  

Several methods have been proposed to obtain MU 

signatures by various decomposition techniques (e.g. [5, 6, 7, 

and 8]). As MUAPs coming from the same MU remain 

unchanged, they will form groups of similar shapes. This 

enables us to use clustering techniques to obtain multiple 

observations of the same shapes and then extract the mean, 

reducing the noise. However, in the case when more MUs 

are present, frequent overlapping of these MUAPs form 

mixtures that may appear as outliers. This can often lead to a 

failure of clustering approaches partly because the number of 

“natural” clusters cannot be assessed.  

In this work, we propose an automated method to estimate 

MU signatures and their firing patterns in case of low 

contraction force applied. The method is a multichannel 

extension of the Wave_clus algorithm [9] that employs 

superparamagnetic clustering [10]. This is a hierarchical 

clustering technique, which assesses the number of clusters 

without user interaction, also leaving a number of shapes 

(outliers) unclustered. We assess its performance and 

accuracy on simulated signals made to mimic activity of a 

small muscle. Abilities to reconstruct the MU signatures are 

assessed in cases when between 3 and 8 MUs are 

simultaneously active. 

Initial results suggest this approach is feasible and could 

be used for future health care applications. We argue that 

obtaining mean MUAP shapes is a necessary first step 

towards the so-called full decomposition, where every 

“firing” of each MU is accounted for.     

Automated way to obtain motor units’ signatures and estimate their 

firing patterns during voluntary contractions using HD-sEMG 

Ivan Gligorijević, Maarten De Vos, Joleen H. Blok, Bogdan Mijović Student Member, IEEE, 

Johannes P. van Dijk, Member, IEEE, Sabine Van Huffel, Fellow, IEEE 

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 4090

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



  

II. METHODS 

 

This section first describes the dataset that was used for 

testing our approach. The algorithm itself is composed of the 

detection and clustering part, where the first is used to 

identify moments of muscle activity and the latter to identify 

which MU was active at detected time instances. The goal of 

clustering is to obtain reliable mean shapes of MUAPs, as 

observed on the recording grid, taking advantage of the 

repetitive nature of active MU firings.  

A. Data 

A surface EMG dataset was created simulating a small 

hand muscle. The spatio-temporal motor unit potentials were 

obtained using a finite volume conductor model 

(ANVOLCON) [11].  

Units’ shapes generated using the model were realistic, yet 

highly spatially correlated and with comparable, low 

amplitude. We used up to 8 different MU templates for our 

further analysis. 

The spatio-temporal simulated signal had 143 data 

channels, the dimensions of the surface recording grid was 

13x11 point electrodes with the inter-electrode spacing of 

3mm perpendicular to the muscle fiber and 6mm in fiber 

direction.  

The firing patterns for individual MUs were created taking 

into account general activation schemes and repetitive 

activity of muscles [12]. Therefore, MUs had Poisson 

distributed interspike-intervals with a mean firing frequency 

ranging from 8 to 24 Hz with increments of 2Hz. Twenty 

second long simulation signals were created, sampled at 

5120 Hz, with added random Gaussian noise of 10µV root-

mean-square (RMS) value. As a result, every units’ shape 

appeared between 160 and 303 times and the mean SNR for 

used template shapes was calculated to be 5.6 dB with the 

standard deviation of 3.3 dB. The SNR was calculated as the 

ratio of signal and the noise power on the channel with the 

highest signal peak. 

We generated 6 different simulated signals. Marked as 

signals 1 to 6, they differ in the number of active MUs 

present: the first signal has 3, and the last one has 8. The 

principle applied for creating signals was to add one more 

MU for each “new” signal. All signals were bandpass filtered 

between 10 and 1000Hz before processing. 

B. Detection 

Some MUs may exhibit large shapes on some of the 

recording electrodes (channels), whereas on the others they 

can be fully covered by noise. The relative position of MUs 

to the recording electrode grid is not a priori known and 

hence, the optimal electrodes for the detection of its activity 

cannot be determined in advance. Therefore, we use a set of 

scattered electrodes (corresponding to signal channels) for 

detection and clustering, distributed around the muscle 

junction so they could describe the propagation of its signals. 

Figure 1 shows the 10 electrodes that were used for treating 

these signals. They are encircled with black boxes. We 

collect all time instances with muscle activity, the so-called 

timestamps. On each of these channels, a noise level is 

estimated as in [13], and the detection threshold is set to be 3 

times this value. If this threshold is crossed, a timestamp of a 

local peak is stored. All timestamps (that indicate presence 

of MU activity) are gathered and used in the clustering 

process. 

C. Clustering 

Clustering is used to obtain mean MUAP shapes. The 

approach is a multichannel adaptation of the Wave_clus 

algorithm described in [9].  

In the single channel approach, the clustering algorithm 

has the following steps: all the observations (spikes) are 

aligned; then, a predefined number of samples prior to and 

after each detected peak are stored. Discrete wavelet 

transform is then used to decompose each of the spikes. The 

10 most discriminating wavelet coefficients according to 

Kolmogorov-Smirnov criteria are chosen to represent each 

spike. We thus have a new feature space of 10 wavelet 

coefficients, and the “projection” of each spike on that 

feature space constitutes the inputs for clustering.  

In the case of HD-sEMG recordings, single channel 

observations do not provide sufficient information to reliably 

discriminate between MUs: sometimes, 2 signatures are very 

similar, and only certain electrodes enable us to see the 

difference. Hence, we need to observe several electrodes 

simultaneously. We assume that the electrodes previously 

used for the detection are sufficiently scattered over the grid 

to provide sufficient information to distinguish between 

different MUAPs. 

The Wave_clus algorithm is extended for the case of 

multichannel observations. This is done by concatenating 22 

samples of spikes from specified electrodes: 10 samples are 

taken before the detected timestamp, and 11 after. This 

provides input vectors that are 220 samples long. Each 

timestamp provides one of these input vectors. Similarly to 

the single-channel approach, the discrete wavelet transform 

is performed, and 55 (one quarter) of the most discriminating 

coefficients (for the whole dataset) are then kept and used as 

inputs for clustering. 

This clustering algorithm automatically assesses the 

number of clusters. Moreover, the clustering process also 

allows having a group of unclustered elements. In the case of 

weaker contractions (smaller number of active MUs), we can 

expect that MUAPs mostly appear alone (non-overlapped), 

resulting in more clustered elements. If, on the other hand, 

more MUs are active, the probability of observing 

overlapped action potentials grows, and the number of 

unclustered shapes grows.  

Among identified clusters, those larger than 50 shapes are 

being kept. For all clustered timestamps belonging to “large 

clusters”, a median shape is calculated in the length of 151 
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samples. Similar to clustering, but this time for every 

electrode in the grid, 75 samples before and after the 

indicated timestamp are stored. Median is then used to better 

assess mean signatures and reduce the noise. After that, the 

singular value decomposition (SVD) is used to further 

diminish the noise for each median shape. Three elements 

with largest variance are kept in the reconstruction. 

D. Evaluation 

Two aspects are of interest when evaluating results: the 

temporal and spatial accuracy. Quality of the clustering itself 

is addressed by temporal parameters whereas the spatial 

determines if the obtained and template shapes belonging to 

MUs match.  

To assess the time correlation of detected and existing 

trains, sensitivity and precision are used. Sensitivity is 

defined as the number of properly classified timestamps 

compared to the number of existing ones (for that particular 

MU). Precision is the number of properly classified 

timestamps divided by the number of detected timestamps 

for particular cluster. Its role is to describe whether the 

clustering was done properly, i.e. to assess if the assigned 

elements really belong to the same MU.  

Each of the signatures obtained by clustering is aligned 

and compared with the original shape using 2 spatial 

validation measures: correlation and the normalized root 

mean square error (NRMSE). NRMSE is calculated using 

formula (1), where x̂  corresponds to estimated and x  to 

template shapes, while the summing is done on all channels, 

over all the samples: 
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Fig. 1: Aligned MUAPs of a single MU on a central part of 

the grid (blue), and their extracted mean shapes (red); 

electrodes used for detection/clustering are encircled with 

black boxes 

III. RESULTS 

In all of the 6 used signals, all of the template shapes 

could be successfully reconstructed. The tendency to 

overcluster the data was noticed – more clusters than actual 

units were usually derived. It was always the case that a 

“large” cluster (one with greater number of elements) is 

present, whereas sometimes a smaller, similar one was also 

observed. This is due to the effect of noise which induced 

enough difference on the MUAPs to be identified as a 

separate cluster. Thus, as mentioned, only the larger clusters 

(more than 50 elements) were kept for the analysis.  

Table 1 shows temporal quality parameters, sensitivity and 

precision, where for each signal a mean value and the 

standard deviation over the identified MUAPs is shown. 

Lower values for sensitivity indicate that a number of 

appearances of each MU firing were not accounted for in 

large clusters that were analyzed. However, this does not 

represent a problem since the goal is to recover mean shapes 

and only try to estimate the mean firing rates. High values of 

precision testify to the fact that most of the shapes were 

correctly classified.  

Figure 1 depicts overlapped observations of the unit where 

the precision had the lowest value (0.6). Its estimated mean 

shape (red) has the spatial correlation 0.97 with the template 

and is thus successfully recovered. 

 
Fig 2: Spatial correlation matching 

 

Figures 2 and 3 show boxplot representations of spatial 

parameters: the first shows the correlation, whereas the latter 

reveals the NRMSE. Results are grouped by the number of 

active MUs used (signals 1 to 6). Red line is a median value, 

while edges of the “boxes” are quartiles. Whiskers show the 

extreme values, and the red stars correspond to outliers. 

Spatial correlation is always high, while NRMSE is low. 

This indicates that the reconstruction of all the existing 

MUAP shapes was performed successfully. As a comparison, 

mean inter-shape correlation (when input shapes are 

TABLE I 

TEMPORAL MATCHING 

 Sig 1 Sig 2 Sig 3 Sig 4 Sig 5 Sig  6 

Sensitivity 0.68±0.16 0.55±0.15 0.46±0.16 0.41±0.13 0.35±0.09 0.32±0.11 

Precision 1.00±0.00 1.00±0.00 0.88±0.20 0.84±0.19 0.95±0.04 0.91±0.06 

Portrayed temporal correlations are between observed and exact clusters; 

values are shown in a format mean±std 
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mutually compared) and the standard deviation are 

0.77±0.16, and for the NRMSE values are 1.04±0.70. 

Largest peak of inter-spike interval (ISI) histograms 

derived from large clusters, always corresponded to values 

within variance around the mean firing frequency of MU in 

question. This made it possible to estimate this frequency. 

 
Fig 3: NRMSE 

IV. DISCUSSION 

We demonstrated a novel way to estimate mean shapes of 

active MUs from recordings of simulated signals, mimicking 

low force voluntary contractions of a small hand muscle. 

This approach uses a multichannel extension of the 

Wave_clus algorithm.  

Signals with variable number of active MUs ranging from 

3 to 8, were tested. The used model provided MU signatures 

of very high spatial correlation and low SNR, realistic for 

this muscle. 

We assess in different ways the quality and effectiveness 

of our approach. As expected, lower sensitivity (shown in 

Table I) emphasizes the need for a full decomposition 

approach, which would be able to account for every 

observed shape by decomposing it into constituent MUAPs. 

Steps towards this goal have been taken [8] but the optimal 

solution to the problem in general is still an open question.  

The spatial parameters portrayed in Figures 2 and 3 testify 

to the successful reconstruction of all of the template shapes: 

spatial correlation is almost always above 0.98, whereas the 

NRMSE is always very low.   

When increasing the number of present units, the 

likelihood of finding a lone observation of a single unit 

(sensitivity) drops. Below a certain point, the number of 

elements in clusters will be insufficient to estimate the mean 

shapes reliably which reveals a certain limitation. Increasing 

the number of present MUAP shapes could thus possibly 

lead to one or more MUs evading detection. However, the 

ability to reconstruct at least 8 different MUAPs is 

demonstrated which is at least as good as in [5,6,7] or better. 

Our goal to estimate the mean shapes and the mean firing 

frequencies from active MUs was successfully met. While 

the mean shapes could be completely reconstructed, firing 

patterns could only be characterized through their mean 

frequencies, due to the relatively small sensitivity.  

Future research will be focused on the reconstruction of 

the exact firing patterns starting with the current approach 

results in order to obtain the so-called full decomposition. 

For this purpose, the development of strategy for “demixing” 

overlapped observations is needed. Taking the assumption of 

possessing exact shapes for all constituent units, and the 

physiological properties of MU firings, this task is 

achievable (e.g. by using some adaptation of [14]), but the 

computational complexity can limit its applicability.  

V. CONCLUSION 

A promising method to identify shapes of constituent MUs 

in voluntary low force contractions of muscles using non-

invasive surface recordings is presented. The exact limitation 

of the method with respect to maximal number of MUs that 

could be extracted remains an open question. However, 

usefulness of the method has been demonstrated. Researches 

can easily use this approach for quick and reliable extraction 

of shapes of MU signatures on the high density recording 

grid and estimation of their mean firing frequencies.  
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