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Abstract— This paper describes an optimal measurement
position estimation by the discriminant analysis based on
Wilks’ lambda for the myoelectric hand control. In the past
studies, the myoelectric signals were measured from the same
positions for the motions discrimination. However, the optimal
measurement positions of the myoelectric signals for the motion
discrimination are different according to the remaining muscle
situation of amputees. Therefore the purpose of this study is to
estimate the optimal and fewer measurement positions for the
precise motion discrimination of the human forearm. This study
proposes the estimation method of the optimal measurement
positions by the discriminant analysis based on Wilks’ lambda
among the myoelectric signal measured from multiple positions.
Some experiments on the myoelectric hand simulator show
the effectiveness of the proposed optimal measurement position
estimation method.

I. INTRODUCTION

In the modern society where the safe management and

accident prevention are recognized enough, there are many

people losing their arms by traffic accidents or disaster.

Therefore the development of artificial arm having a same

function as lost arm is expected. Many studies have been

performed involving electromyogram (EMG) signals to con-

trol robotic artifacts, such as prosthetic hand, arm and upper

limb.

The EMG is a record of the myoelectric potential that

muscular fiber conduct in response to a motion command.

Therefore the EMG includes the motion command informa-

tion. Fig.1 shows an example of EMG waveform. Highly

precise pattern analysis processing is necessary to estimate

the motion intention from EMG. In the several studies, the

neural network has been often used and realizes the high

discrimination precision.

In the past, several studies of the human forearm mo-

tion discrimination based on the myoelectric signal have

been conducted. As such, the backpropagation based on the

frequency information of the myoelectric potential [1], the

neural network based on the statistics structure [2] [3], the

concise neural network by the optimization of input data

and learning data [4], the adaptive fuzzy inference using the

average value and the standard deviation of the myoelectric

signals [5], the pattern analysis based on the reconfigu-

ration possibility hardware and the genetic algorithm [6],

the recognition of hand motions based on multi-channel

sEMG using Monte Carlo method for channel selection

[7], the neural network based on the principal component
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Fig. 1. Example of myoelectric potential waveform.

analysis of the frequency information [8], and a new learning

method of Gaussian mixture models (GMMs) to improve the

EMG pattern recognition accuracy [9] have been researched.

In other studies, hidden Markov model (HMM) [10] [11],

neural network [12], fuzzy inference [13]-[16] and linear

discriminant analysis (LDA) [17] [18] have been used.

In the past studies, motions were identified by measuring

the myoelectric signals at the same positions. However, the

optimal measurement positions of the myoelectric signals

for the motion discrimination are different according to

the remaining muscle situation of amputees. Therefore the

myoelectric potential should be measured at the optimal

positions of each users. In addition, because the use of

many myoelectric sensors is not realistic due to the cost and

the amputating situation of the human forearm, the motion

should be identified with smaller number of myoelectric

sensors. Then, there is a possibility that the motions can

be identified with smaller number of myoelectric sensors by

measuring the myoelectric potential at the optimal positions

statistically selected. Therefore the purpose of this study is to

estimate the optimal measurement positions for the motion

discrimination and to obtain high discrimination precision of

the human forearm motions.

In the recent study, the selection of the myoelectric sensor

by the variable selection method based on the partial KL

information measure [19], the investigation of the optimum

electrode locations by using an automatized surface EMG

analysis technique [20] and an electrode selection algorithm

for the high density EMG recordings [21] are researched.

This study proposes the estimation method of the optimal

measurement positions by the discriminant analysis based on

Wilks’ lambda from the myoelectric signals measured from

multiple positions.
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Fig. 2. Configuration of the optimal measurement position estimation
method.

Fig. 3. Myoelectric sensors of eight channels are assigned every 45 degrees
to the forearm.

II. OPTIMAL MEASUREMENT POSITION ESTIMATION BY

DISCRIMINANT ANALYSIS BASED ON WILKS’ LAMBDA

A. Summary

The configuration of the optimal measurement position

estimation method appears in Fig.2. The myoelectric signals

are measured from eight positions for the estimation of the

optimal measurement positions. The optimal measurement

positions are selected from these eight channels by the

discriminant analysis based on Wilks’ lambda.

In this study, six types of motion, ”Open”, ”Grasp”,

”Flexion”, ”Dorsiflexion”, ”Pronation” and ”Supination” are

applied as the identification target motions.

B. Measurement of Myoelectric Potential

The measurement of the myoelectric potential uses a

dry process myoelectric sensor SX230 made in Biometrics

Company of eight channels. The amplification rate is 1000

times, and the bandwidth is 20Hz - 460Hz. This myoelectric

sensor has the third Butterworth filter (a high pass filter of

20Hz) and the eighth coalition Chebyshev filter (a low pass

filter of 460Hz) built-in. The measured myoelectric potential

is input to the PC after making A/D conversion (sampling

period 1kHz). The myoelectric potential input into a PC

draws a waveform in an application manufactured by Visual

C++.net 2003.

The myoelectric sensors of eight channels are assigned

every 45 degrees to the forearm of the subject (cf. Fig.3

). Because there are ”flexor digitorum muscle, flexor carpi

radialis muscle and flexor carpi ulnaris muscle, etc.” used

for the identification target motions, the myoelectric po-

tential is measured as shown in Fig.3. Then there is a

possibility that the muscles used for the forearm motions are

different from healthy people according to the amputating

Fig. 4. Process of the optimal position estimation.

situation. Therefore the optimal measurement positions for

the motion discrimination are different according to the

remaining muscle situation of amputees. In addition, there

is a possibility that the measurement from the neighborhood

of the muscular motor point becomes difficult by the below-

elbow amputation. Therefore, this study doesn’t measure

from the neighborhood of the motor point and selects the

optimal positions from eight electrodes allocated on the arm

at regular intervals.

C. Feature Extraction

This study uses the root mean square (RMS) that shows

the power of a signal for the feature quantity. The RMS can

appropriately measure the signal with many noises, the signal

of non-periodicity, and the signal of non-sinusoidal waves. In

addition, the RMS maintains appropriate information more

than the EMG is rectified or integrated [22]. And the RMS

doesn’t receive the influence by the superposition of a series

of the action potential of the motor unit. Therefore only RMS

is used for the feature quantity. The RMS is defined as the

following equation.

RMS(t) =

√

√

√

√

1

2T

T

∑
τ=−T

e2(t + τ) (1)

The symbol e(t) is the myoelectric potential signal and

(-T,+T) is a calculation interval. Because there is the elec-

tromechanical delay (EMD) till the muscle generates power

from the generation of EMG, the myoelectric potential is

generated about 100ms before the muscle generates the

power [23]. The motion discrimination should be finished

within this 100ms so that prosthetic hand users does not feel

the delay. Therefore the calculation period is set to 70ms

in consideration of the calculation time of the identification

processing.

D. Estimation of Optimal Measurement Position by Discrim-

inant Analysis based on Wilks’ lambda

The discriminant analysis is a method to distinguish the

data groups that are known to belong to given group in

advance. Therefore, in this study, 20 pairs of the RMS values

of eight channels are prepared for each identification target

motion (cf. Fig.4) and each motion groups are distinguished.
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Fig. 5. Wilks’ lambda by the number of selected positions.

 

CH1 

CH5 

CH3 CH7 

outside 

inside 

CH4 CH6

CH8CH2

(a) subject A (CH 1,4,8).
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(b) subject B (CH 1,3,6).
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(c) subject C (CH 2,3,7).

Fig. 6. Optimal measurement positions are selected by the stepwise
selection. Three channels were selected in all subjects.

In addition, the motion groups are distinguished according

to Mahalanobis’ generalized distance. Then the optimal

measurement positions are selected by the stepwise forward

selection method. The selection criterion of the measurement

position is set to pin = pout = 0.05. The discriminant precision

at the selected positions is confirmed by Wilks’ lambda.

Wilks’ lambda is an examination of the difference of the

average value extended to the multivariate. Wilks’ lambda is

shown as the following equation.

Λ = |W |/|T | (2)

T is total sum of squares and products matrix and W is

within-groups sum of squares and products matrix. The

following equation show the increase of the discriminant

precision when new variable x j was added to variable xp.

Λ(x j|xp) = Λ(x j,xp)/Λ(xp) (3)

The numerator of right-hand side shows the lambda by x j

and xp. The denominator shows the lambda by xp. Wilks’
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Fig. 7. Configuration of the motion discrimination system process.

lambda becomes the value between from 0 to 1. If the value

is close to 0, the discriminant precision is high.

This study estimates the optimal measurement positions

by three healthy people (subject A, B, C). Fig.5 shows

the values of Wilks’ lambda by the number of selected

positions. Whenever the selected position increases, the value

approaches 0. The change of the value becomes small after

the number of the selected position became three. Therefore,

selected first three positions become the optimal measure-

ment positions. Fig.6 (a) - (c) show the experiment results.

As for subject A, three channels, CH1, CH4 and CH8 were

selected (cf. Fig.6(a)). As for subject B, three channels, CH1,

CH3 and CH6 were selected (cf. Fig.6(b)). As for subject

C, three channels, CH2, CH3 and CH7 were selected (cf.

Fig.6(c)). Each optimal measurement positions were different

though all subjects were healthy people. It is thought that the

selected optimal measurement positions are related to the

individual physical characteristics of the myoelectric signals

by ”the habit of a muscular usage” and ”the physique”,

etc. Therefore, the proposed method can correspond to the

individual situation of the remaining muscle of amputees.

III. MOTION DISCRIMINATION SYSTEM BY

PATTERN ANALYSIS

A. Summary

This chapter confirms whether the forearm motions can be

identified in the high precision from the myoelectric potential

measured from the selected optimal positions. In the past, a

lot of motion discrimination methods have been researched

[1]-[18]. This study realizes the motion discrimination by

the fuzzy inference method [5]. The motion discrimination

is performed from the myoelectric potential measured from

”the optimal position” and ”the normal position”, and the

discrimination precision is compared. As for the number of

the myoelectric sensors, the optimal position is three and

the normal position is four. The configuration of the motion

discrimination system process appears in Fig.7. This study

outputs the discrimination motion to the simulator made by

Open-GL.

B. Membership Function by Average Value and Standard

Deviation of Myoelectric Potential

The membership function is designed by the average

value (AVE) and the standard deviation (SD) from RMS
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Fig. 9. Fuzzy membership function.

of the myoelectric potential for t times of each motion

measured beforehand. Fig.8 shows the waveform of the

myoelectric potential when maintaining the strength with a

palm opened (the full line). The dash line shows AVE. The

measured myoelectric potential never maintains a constant

value when the muscle is having power maintained in the

same way. Therefore this study obtains AVE and SD from

RMS of t times of the identification target motion. This study

assumes the distribution of RMS from AVE to be a normal

distribution. And, the membership function is designed from

a relation of AVE and SD in a normal distribution.

Therefore the membership function is designed as shown

in Fig.9. If RMS is near to AVE, the membership function

is SM (Small). If RMS is slightly far from AVE, the

membership function is MD (Middle). If RMS is far from

AVE, the membership function is BG (Big). The membership

function takes the grade value from 0 to 1 depending on

RMS. Such a membership function is designed for every

channel of each motion.

C. Fuzzy Rule

The fuzzy rules are designed as shown in Table I. This

table shows the motion discrimination method of the four

channel estimation. This study determines the motion prob-

ability by the combination of SM, MD and BG of four

channels. The motion probability is high probability (HP)

in the case of SM on all channels, and middle probability

(MP) in the case of SM on three channel and MD on one

channel, and low probability (LP) in the case of SM on

two channel and MD on two channels, and extremely-low

TABLE I

FUZZY IF-THEN CONTROL RULES.

CH1 CH2 CH3 CH4 output value

HP SM SM SM SM 1.00

MP MD SM SM SM 0.75

MP SM MD SM SM 0.75

MP SM SM MD SM 0.75

MP SM SM SM MD 0.75

LP SM SM MD MD 0.50

LP SM MD SM MD 0.50

LP MD SM SM MD 0.50

LP SM MD MD SM 0.50

LP MD SM MD SM 0.50

LP MD MD SM SM 0.50

EP SM MD MD MD 0.25

EP MD SM MD MD 0.25

EP MD MD SM MD 0.25

EP MD MD MD SM 0.25

NM BG BG BG BG 0.00

probability (EP) in the case of SM on one channel and MD

on three channels. In addition, the motion is not performed

(No Motion : NM) in the case of BG on all channels. ”Output

value” of Table I shows the inference output value of each

rule. When the number of the myoelectric sensors used is

three, the row of ”CH4” in Table I is omitted.

This study applies the possibility distribution inference

method [24]. The possibility distribution inference method

has little computational complexity compared with the ”Min-

Max” method. The degree of confidence ωk of each rule

is calculated from Eq.(4). Ak
p(xp) is an output value of the

membership function of each rule. xp is an input value to

each membership function. P is the number of parameters in

the rule.

ωk =
P

∏
p=1

Ak
p(xp) (4)

The inference result ŷ of the entire rules is calculated from

Eq.(5). ŷk is the output value of each rule (cf. ”output value”

of Table I). K is the number of rules and K=16 in this study as

shown in Table I. The inference result ŷ is assumed to be the

discrimination probability DP of motion. These inferences

are performed for the each identification target motion.

ŷ =

K

∑
k=1

ωk · ŷk

K

∑
k=1

ωk

(5)

IV. MOTION DISCRIMINATION EXPERIMENT

A. Experiment Environment

Fig.10 shows the experimental setup of motion discrim-

ination and Fig.11 shows the simulator. In this study, six

types of motion, ”Open”, ”Grasp”, ”Flexion”, ”Dorsiflexion”,

”Pronation” and ”Supination” are applied as the identification

target motions (cf. Fig.12). In addition, the motion is recog-

nized when the discrimination probability DP is more than
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Fig. 10. Experimental setup of motion discrimination.

Fig. 11. Waveform drawing application and myoelectric hand simulator.

”0.8” and the recognition is canceled if the discrimination

probability DP becomes below ”0.3”.

In these experiment contents, six kinds of motions are

performed by 50 times respectively. The discrimination result

by the fuzzy inference identifies the probability that the

result is correct for the real motion. This study applies on

the selected optimal measurement positions and the normal

measurement positions and compares the discrimination pre-

cision. The normal measurement positions of the myoelectric

sensors of four channels are assigned every 90 degrees to

the forearm of the subject (cf. Fig.13). This measurement

position set has been often used in the past studies of

the motion discrimination based on the myoelectric signal.

These experiments never give an arm load and three subjects

(A, B, C) are the same as the optimal position estimation

experiments in the last chapter.

B. Experiment Results

Fig.14 shows the experiment results. All motions were

able to obtain the high discrimination precision more than

90% for three subjects and all subjects were able to obtain the

high discrimination precision by measuring the myoelectric

potential at each optimal positions. In addition, as for subject

C, the discrimination rates by three myoelectric sensors at the

optimal positions was higher. It is thought that the position of

the cause of the misrecognition can be avoided by estimating

the optimal positions.

In addition, the discrimination rate by three myoelectric

sensors at the optimal positions was almost at the same level

as the rate by four myoelectric sensors at the normal posi-

tions. Therefore these experiments verified that the number

Open 

Grasp 

Flexion 

Dorsiflexion 

Pronation 

Supination 

Fig. 12. Six types of motions are applied as the identification target
motions.
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Fig. 13. Normal measurement positions (CH.1,3,5,7) of the myoelectric
sensors of four channels are assigned every 90 degrees.
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Fig. 14. Discrimination experimental results.

of myoelectric sensors could be reduced by measuring the

myoelectric signals at the optimal positions.

C. Discussion

This study realized the human forearm motion discrimi-

nation with only three myoelectric sensors by measuring the

myoelectric signal at the optimal measurement positions but

still has the following important future problems.

• This study was able to obtain the high discrimination

precision with only three myoelectric sensors. When the

myoelectric hand is used, fewer myoelectric sensors are

more practical. In the future, the motions will have to

be identified with fewer myoelectric sensors. Therefore
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the optimal measurement positions will have to be

estimated from the myoelectric signals measured at

multiple and precise positions by increasing the number

of myoelectric sensors.

• This study was able to correspond to the individual

physical characteristics, ”the habit of a muscular usage”

and ”the physique”, etc. in healthy people. Therefore

there is a possibility that the proposed method will

show the ability also for forearm amputees. However

the myoelectric signal characteristics might be different

between forearm amputees and healthy people. Some

experiments will have to be performed by real amputees.

• The kinds of the identification target motions will have

to be increased and the motions will have to be com-

bined so that the discrimination system can respond to

the various motions and the situations of the activities

of daily living (ADL).

V. CONCLUSION

This paper describes an optimal measurement position

estimation by the discriminant analysis based on Wilks’

lambda for the myoelectric hand control. This study was able

to obtain the high discrimination precision with only three

myoelectric sensors by measuring the myoelectric signals at

the optimal measurement positions. The optimal measure-

ment positions for the motion discrimination are different

according to the remaining muscle situation of amputees. It

is probable that the proposed method will show the ability

also for real amputees. Therefore this study is very useful

when real amputees use myoelectric hands.

The motion misrecognition is very dangerous for the

myoelectric hand control. Therefore it is necessary to get

the high discrimination precision. Our future work will solve

some important problems described in the last chapter.
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