
  

  

Abstract—The rough entropy (RoughEn) is developed based 
on the rough set theory. It has the advantage of low 
computational complexity, because there is no parameter to set 
in RoughEn. In this paper, we characterized the feature of 
surface electromyography (SEMG) signal with RoughEn and 
then used support vector machine to classify six different hand 
motions. The sample entropy, wavelet entropy and approximate 
entropy were compared with RoughEn to evaluate the 
performance of characterizing SEMG signals. The experimental 
results indicated that the RoughEn-based classification 
outperformed other entropy based methods for recognizing six 
hand motions from four-channel SEMG signals with the best 
recognition accuracy of 95.19 ± 2.99%. The results suggest that 
RoughEn has the potential to be used in the SEMG-based 
prosthetic control as a method of feature extraction. 

I. INTRODUCTION 
URFACE electromyography (SEMG) controlled 
prosthetic hand has received widespread use mainly due 

to the advantage of autonomous nature of control [1][2]. In 
the implementation of multifunctional prosthetic control by 
SEMG, pattern recognition plays a key role, and it includes 
two crucial steps: feature extraction and classification [1]. 
Various feature extraction methods have been proposed for 
SEMG-based prosthetic control, which can be roughly 
classified into three categories, namely time domain, 
frequency domain, and time–frequency domain methods 
[1][3]. 

SEMG signal has shown some kind of nonlinear or even 
chaotic behavior [4][5]. Therefore, it is reasonable to apply 
the nonlinear time series analysis methods to SEMG signal, 
such as the fractal dimension, correlation dimension, 
correlation integral, Lyapunov spectrum, Kaplan–Yorke 
dimension and recurrence plot analysis [4][6]. However, 
these methods may result in spurious results when they are 
applied to short or irregular sequences of real experimental 
data [4][6]. Moreover, the noise is unavoidable in SEMG due 
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to various factors, affecting the performance of these 
methods.  

Since Pincus proposed the approximate entropy (ApEn) to 
measure the system complexity [7][8], it has been widely 
used for biomedical signals, because it is applicable to short 
and noisy dataset. Entropy, such as the ApEn, sample entropy 
(SampEn) and wavelet entropy (WaveletEn), has been 
applied to characterize SEMG for analysis or classification 
[9][10][11]. However, the parameter selection for ApEn, 
WaveletEn and SampEn is still subjective and usually needs 
repetitive experiments to obtain the ‘optimal’ parameters.  

Recently, the rough entropy (RoughEn) has been proposed 
based on the rough set theory (RST) [12]. RST represents a 
mathematical approach to vagueness and uncertainty of 
imperfect knowledge [13]. Therefore, RoughEn can 
characterize the vagueness and uncertainty of signals or 
images. RoughEn has been applied mainly in image 
processing, such as object extraction [12], object tracking [14] 
and image segmentation [15]. However, it is seldom used for 
biomedical signals, except Gene analysis [16]. 

In this paper, we propose a method for discriminating 
different hand motions from SEMG signals with RoughEn 
and support vector machine (SVM). 

II. METHODS 

A. Rough Entropy 
RST is based on the assumption that with every object of 

the universe there is associated a certain amount of 
information (data, knowledge), expressed by means of some 
attributes used for object description [17]. 

The theory of RoughEn is introduced as follows [18][19]. 
Let K=(U,R) be an approximation space, where U is a 
non-empty and finite set called the universe; R is a partition of 
U, or an equivalence relation on U. Then the approximation 
space K can be regarded as a knowledge base about U. Let  
                                 R={R1,R2,…,Rm}                               (1) 

Given a partition R, and a subset UX ⊆ , we can define a 
lower approximation of X in U and an upper approximation of 
X in U by the following expressions: 
                           }|{ XRRRXR ii ⊆∈= ∪                         (2) 
and 
                         }|{ φ≠∩∈= XRRRXR ii∪                       (3) 
where XR  is the lower approximation and XR is the upper 
approximation. 

Both the lower approximation and upper approximation are 
unions of some equivalence classes. More precisely, XR is 
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the union of those equivalence classes which are subsets of X, 
and XR  is the union of those equivalence classes which have 
a non-empty intersection with X. 

The RoughEn of knowledge R is defined by 
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where |Ri|/|U| represents the probability of equivalence class 
Ri within the universe U, and 1/|Ri| denotes the probability of 
one of the values in equivalence class Ri. 

If R= R̂ , then the RoughEn of knowledge R achieves the 
minimum value 0. 

If R= R
� , then the RoughEn of knowledge R achieves the 

maximum value log2|U|.  
Obviously, when R is a partition of U, or an equivalence 

relation on U, we have that 0 ≤ RoughEn(R) ≤ log2|U|. 
In practical application, for an N sample time series 

{u(i):1≤i≤N}, the time series can be represented by U. If u(i) 
and u(j) (i≠j) are the same, they will belong to the same class 
Ri, where |Ri| denotes the number of Ri set, namely 
|Ri|=1/card(Ri). 

B. SVM  
SVM is a supervised machine learning algorithm proposed 

by Vapnik and his co-workers [20]. It aims at minimizing an 
upper bound of the generalization error through maximizing 
the margin between the separating hyperplane and the data. 
SVM is known to generalize well even in high dimensional 
spaces under small training sample conditions and has shown 
to be superior to traditional empirical risk minimization 
principle. SVM has been studied extensively for 
classification, regression and density estimation. In this work, 
the “one-against-one” strategy of SVM, which builds one 
SVM for each pair of classes, was adopted to classify 
different hand motions. More detailed information about this 
multiclass SVM can be found in [21]. 

III. EXPERIMENTS 

A. Subjects 
Six healthy young subjects participated in the experiment. 

None of them had any history of neuromuscular disorder. 
Each was given the written informed consent prior to the 
experiment. 

B. Data Acquisition 
Four channels of SEMG signals were recorded using the 

bipolar, Ag-AgCl, surface electrodes with 15 mm diameter 
and 20 mm center to center spacing. Skin surface of the area 
of interest was abraded with alcohol beforehand. The 
electrodes were placed on the forearm above the wrist flexors, 
extensors and each side of the forearm, approximately 
equidistant from the elbow and the wrist [22]. The reference 
electrode was placed on the proximal head of the ulna. The 
SEMG signals were digitally sampled at 1000 Hz with 
amplified gain of 2000, and filter bandwidth of 10 - 800 Hz.  

Each subject was instructed to perform six different hand 

motions, namely wrist flexion (WF), wrist extension (WE), 
radial deviation (RD), ulnar deviation (UD), hand closing 
(HC) and hand opening (HO). Subjects performed each class 
of motions 60 trials and each contraction trial was held for 5 
second durations. The initial hand position was in horizontal 
position for each subject, and it was consistent in each trial. 
Once the contraction was established, the SEMG data would 
be recorded. There is a 2 minute resting period after each 
motion to avoid muscle fatigue.  

C. Signal Processing 
The SEMG signals were segmented for each trial to 

calculate the entropy. Every segment lasted 1 second with 
1024 points starting from the 2nd second. For each subject, 30 
segments in every class of motions were randomly selected, 
and totally 180 segments were grouped as training dataset to 
train SVM. The remaining segments were used as testing 
dataset to verify the performance of different entropies. The 
data used for training and testing are not overlapped. 

In order to comprehensively evaluate the performance of 
RoughEn-based classification of different hand motions, we 
also adopted SampEn, WaveletEn and ApEn for comparison. 
All the SEMG segments were processed by the RoughEn, 
SampEn, WaveletEn and ApEn algorithms as SEMG features 
for classification. The parameters were obtained based on 
both the experiments and the relative paper. The m and r 
values were 2 and 0.2 for SampEn and ApEn, respectively, 
and the Haar wavelet was selected for  WaveletEn with three 
decomposition levels. 

The LIBSVM software was used for classification in this 
work, which had been widely used in many areas. RBF 
function was selected as the kernel function of SVM.  

IV. RESULTS 

A. Qualitative Feature Distribution 
For an intuitive observation of the feature distributions of 

six known motions, we randomly selected the distributions in 
channel 2 and channel 3 for different entropies. As shown in 
Fig. 1, the abscissa represents the entropy values of SEMG 
from channel 2, and the ordinate refers to those from channel 
3. We can find that points of the six motions in Fig. 1(b), 1(c) 
and 1(d) are not clearly distinguishable. The overlapped 
points indicate that it is difficult to discriminate six motions 
from SampEn, WaveletEn and ApEn. Distributions of points 
in Fig. 1(a) are much clearer at the boundaries, indicating that 
different motions can be potentially classified by RoughEn. 

B. Quantitative Results 
Table I shows the recognition accuracy of different 

entropy-based features in all kinds of channel combinations. 
The recognition accuracies of RoughEn are much better than 
those of other three entropies in every kind of channel 
combination. The best accuracy of RoughEn is 95.19±2.99% 
with four channel combination, and even with two channel 
combination, the best one is 82.13±7.19%, which is higher 
than the best results of other entropy based methods.  
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Fig. 1 Scatter plots of entropy values of two-channel SEMG signals for six 
motions, (a) distribution of RoughEn values; (b) distribution of SampEn 
values; (c) distribution of WaveletEn values; (d) distribution of  ApEn 
values. 

 
TABLE I 

AVERAGE RECOGNITION ACCURACY OF DIFFERENT ENTROPY-BASED 
CLASSIFICATION 

 

Channel 
Combination  RoughEn SampEn 

1&2 80.56±9.45 45.47±4.42 
1&3 67.50±11.31 43.24±6.21 
1&4 70.56±12.41 38.33±6.82 
2&3 84.08±7.74 49.26±7.83 
2&4 82.13±7.19 44.35±7.71 
3&4 81.67±10.33 47.32±6.22 

1&2&3 89.17±5.26 55.18±9.89 
1&2&4 89.63±5.46 50.93±6.31 
1&3&4 85.37±11.11 52.22±7.01 
2&3&4 92.69±4.91 54.72±10.27 

1&2&3&4 95.19±2.99 57.31±11.03 
Channel 

Combination  WaveletEn ApEn 

1&2 59.63±9.32 36.85±4.20 
1&3 55.10±10.32 39.45±6.80 
1&4 59.07±11.61 39.35±8.00 
2&3 54.07±9.33 36.67±9.11 
2&4 46.48±9.88 35.74±4.40 
3&4 52.22±10.35 41.57±8.96 

1&2&3 68.89±9.09 41.67±9.41 
1&2&4 69.72±9.70 44.35±6.10 
1&3&4 67.96±9.64 48.61±9.08 
2&3&4 62.59±11.63 42.87±8.50 

1&2&3&4 76.67±11.93 49.17±9.09 
 

V. DISCUSSION 
In this paper, we described an entropy-based framework of 

recognizing six hand motions from SEMG signal. As shown 
in Table I, RoughEn-based motion recognition obtained most 
accurate classification, and outperformed other compared 
methods.  

The most important advantage of RoughEn is that its 
computational complexity is very low, because there is no 
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parameter to set in RoughEn. While in SampEn, WaveletEn 
and ApEn, the parameter selection is somewhat a subjective 
choice, and usually needs repetitive experiments to obtain the 
‘optimal’ parameters, which is time-consuming. The low 
computational complexity makes it possible for RoughEn to 
be used in the real-time prosthetic control, which will be 
investigated in our further work. 

RoughEn has been successfully applied in SEMG signal. 
Therefore, it has the potential to be applied to other 
physiological signals with short data length in noisy 
background, such as electroencephalogram and 
electrocardiogram, which will be studied in the future. 

In this work, we use SVM, a very popular classification 
algorithm, as the classifier. Although the recognition results 
are satisfied to some extent, more classification algorithms 
should be involved to more comprehensively evaluate 
RoughEn as a characteristic feature of SEMG. Moreover, the 
real-time prosthetic control is always the purpose to develop 
prosthetic hands. But SVM is time-consuming, which may be 
not suitable for the real-time prosthetic control. We will study 
the feasibility of combining RoughEn with relevance vector 
machine (RVM) to realize real-time controlling of 
SEMG-based prosthesis, because RVM is more effective than 
SVM in time-cost.   

VI. CONCLUSION 
In conclusion, we proposed the RoughEn-based method for 

supervised classification of different hand motions from 
SEMG signal. The results indicated that RoughEn had better 
performance than all other entropies compared in this work to 
characterize SEMG features for hand motions, suggesting 
RoughEn has the potential to be used for controlling the 
SEMG-based multifunctional prosthesis. 

REFERENCES 
[1] A. O. Mohammadreza and H. S. Hu, “Myoelectric control systems—A 

survey,” Biomedical Signal Processing and Control, vol. 2, 2007, pp. 
275-294. 

[2] H. S. Ryait, A. S. Arora and R. Agarwal, “Study of issues in the 
development of surface EMG controlled human hand,” Journal of 
Materials Science: Materials in Medicine, vol. 20, supp.1, 2009, pp. 
107-114. 

[3] M. Zecca, S. Micera, M. C. Carrozza, et al., “Control of multifunctional 
prosthetic hands by processing the electromyographic signal,” Critical 
Reviews in Biomedical Engineering, vol. 30, 2002, pp. 459-485. 

[4] Y. W. Swie , K. Sakamoto and Y. Shimizu, “Chaotic analysis of 
electromyography signal at low back and lower limb muscles during 
forward bending posture,” Electromyography and. Clinical 
Neurophysiology, vol. 45, 2005, pp.329-342. 

[5] D. Rodrick and W. Karwowski, “Nonlinear dynamical behavior of 
surface electromyographical signals of biceps muscle under two 
simulated static work postures,” Nonlinear Dynamics, Psychology, and 
Life Sciences, vol. 10, 2006, pp.21-35. 

[6] B. Berthold, “Entropy,” Best Practice & Research Clinical 
Anaesthesiology, vol. 20, 2006, pp.101-109. 

[7] S. M. Pincus, “Approximate entropy as a measure of system 
complexity,” Proceeding of the National Academy of  Sciences of the  
United States of America, vol. 88,1991,  pp. 2297-2301, 

[8] S. M. Pincus, “Approximate entropy (ApEn) as a complexity measure,” 
Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 5, 1995, 
pp. 110-117. 

[9] W. T. Chen, Z. Z. Wang and X. M. Ren, “Characterization of surface 
EMG signals using improved approximate entropy,” Journal of 
Zhejiang University-SCIENCE B, vol. 7. 2006, pp. 844-848. 

[10] V. E. Kosmidou and L. J. Hadjileontiadis, “Sign language recognition 
using intrinsic-mode sample entropy on sEMG and accelerometer 
data,” IEEE Transactions on Biomedical Engineering, vol. 56, 2009, pp. 
2879-2890. 

[11] A. Almanji and J. Y. Chang, “Feature extraction of surface 
electromyography signals with continuous wavelet entropy transform,” 
Microsystem Technologies, vol 2, 2011, 1-10. 

[12] K. P. Sankar, B. U. Shankar and M. Pabitra, “Granular computing, 
rough entropy and object extraction,” Pattern Recognition Letters, vol. 
26, 2005, pp. 2509-2517.  

[13] Z. Pawlak, “Rough sets,” International Journal of Computer and 
Information Sciences, vol. 11, 1982, pp. 341-356. 

[14] A. S. Jalal and U. S. Tiwary, “A robust object tracking method for noisy 
video using rough entropy in wavelet domain,” Proceedings of the First 
International Conference on Intelligent Human Computer Interaction, 
2009, pp. 113-122. 

[15] D. Malyszko and J. Stepaniuk, “Adaptive multilevel rough entropy 
evolutionary thresholding,” Information Sciences, vol.180, 2010, 
pp.1138-1158.  

[16] E. E. Sara, E. F. Radwan and T. T. Hamza, “ Rough Entropy as Global 
Criterion for Multiple DNA Sequence Alignment,” International 
Journal of Computer Science and Information Security, vol. 8, 2010, pp. 
114-121. 

[17]  J. Y. Liang and Z. Z. Shi, “The information entropy, rough entropy and 
knowledge granulation in rough set theory,” International Journal of 
Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 12, 2004, 
pp. 37-46.  

[18] T. Beaubouef, F. E. Petry and G. Arora, “Information-theoretic 
measures of uncertainty for rough sets and rough relational databases,” 
Information Sciences, vol. 109, 1998, pp.535-563. 

[19] J. Y. Liang and Z. B. Xu, “The algorithm on knowledge reduction in 
incomplete information systems,” International Journal of 
Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, 2002, 
pp. 95-103. 

[20] V. N. Vapnik, “Statistical learning theory,” John Wiley & Sons, 1998. 
[21] C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector 

machines [Online],”2001, pp. 1-39. 
Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm 

[22] Y.H. Huang, K.B. Englehart, B. Hudgins, et al., “A Gaussian mixture 
model based classification scheme for myoelectric control of powered 
upper limb prostheses,” IEEE Transactions on Biomedical 
Engineering, vol. 52, 2005, pp. 1801-1811. 

 

4103


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

