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Abstract— This paper presents the design of an adaptable 
Human-Machine Interface (HMI) for controlling virtual 
forearm prosthesis. Direct physical performance measures 
(obtained score and completion time) for the requested tasks 
were calculated. Furthermore, bioelectric signals from the 
forehead were recorded using one pair of electrodes placed on 
the frontal region of the subject head to extract the mental 
(affective) measures while performing the tasks. By employing 
the proposed algorithm and above measures, the proposed 
HMI can adapt itself to the subject's mental states, thus 
improving the usability of the interface. The quantitative 
results from 15 subjects show that the proposed HMI achieved 
better physical performance measures in comparison to a 
conventional non-adaptive myoelectric controller (p < 0.001). 

Key words: Affective measure, Human-Machine Interface, 
Virtual Reality 

I. INTRODUCTION 

a)  Background 

In the myoelectric prosthesis literatures, the real-time/on-
line terms are commonly used to reflect how fast the control 
system can generate proper outputs after receiving the input 
signal(s)–response time. However, despite a short delay in 
response time, without having the capability of being 
updated over time, the control system will be faced with 
exponentially rising error over long-run operation, and its 
performance will degrade [1]. Nishikawa [2] performed a 
study regarding on-line motion classifiers using an 
Electromyogram (EMG) for motor skill evaluation. It was 
shown that the proposed method can cope with gradual 
changes in a myoelectric signal. However, because of the 
limited resources to perform large computational tasks, 
updating in real-time was impossible to accomplish for 
drastic changes in the EMG.  
     Kato et al. [3] controlled an EMG prosthetic hand by 
employing an adaptable neural network, which can manage 
data learning by examining the mapping to a training set of 
data in real-time. Fukuda et al. [4] used the EMG entropy 
level as a measure of the classifier input-output pairs' 
validity. They stated that if the developed EMG entropy was 
lower than a predefined threshold, then the reliability of the 
classified patterns could be high. Thus, the input-output pairs 
could be added to the neural network's on-line training set, 
while the oldest pairs were deleted from it. 

 
 

 

 

b) Virtual Reality as Training Medium 

Using a myoelectric prosthesis requires great mental effort 
and attention from a user, especially in an initial training 
phase. Thus, the interface of the prosthesis should have 
simplicity and interactivity. It should also motivate and 
encourage the user of the prosthesis to continue the training 
process and facilitate a positive transfer of learning to other 
contexts. According to recent studies [5], Virtual Reality 
Environment (VRE) technology provides adaptable and rich 
media to create environments for the assessment and training 
of motor deficits.  

c) The Study Goal 

Affection related emotion recognition is an important step in 
designing advanced human machine interfaces (HMI). 
Therefore, using bioelectric signals to detect emotions has 
recently gained the much attention in the field of human-
machine interface. Since emotion can affect the performance 
of individual subjects, an intelligent HMI should be able to 
estimate or predict their emotional states as the higher-level 
context for improving service quality [6]. To solve the 
mentioned shortcomings in the real-time adaptation 
(cognitive interaction) of a myoelectric prosthesis' interface, 
we hypothesized that using the subject's emotional indices 
(affective measures) for updating the scheme of a prosthesis 
controller within an interactive medium could enhance the 
interface and consequentially improve the user's 
performance. Thus, we have designed and implemented a 
collaborative and affective human-machine interface 
(aHMI) and updated the interface control scheme using the 
user's mental states.      Here, the manipulating commands 
for controlling a virtual forearm were extracted from Biceps 
and Triceps activities of a subject. By using a pair of 
electrodes placed on the frontal region of the subject's head, 
the relative bioelectric signals were recorded to explore the 
subject's affective measures. 
      Hence in this study, we would like to clarify the 
relationship among the mental workload, task demands, and 
performance. We hypothesize that the system's context 
awareness and interactivity will increase by employing the 
affective cues of a subject. 
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II. MATERIALS AND METHODS 

a).Data Collection System 

In this research, a Biopac system (MP100 model and 
ack100w software version) [7] was used to acquire 
bioelectric-signals and was connected to a PC (1.73 GHz, 2 
G Byte RAM) for further processing. Values of 1000 Hz and 
5000 were selected as the sampling frequency and amplifier 
gain, respectively. A value of 0.1 Hz was chosen as the low 
cutoff frequency of the filter to avoid motion artifacts, and a 
narrow band-stop filter (48 Hz–52 Hz) was also used to 
eliminate the line noise. Fifteen volunteers, aged between 19 
and 30, participated in this study to validate the experimental 
procedure and the robustness of our proposed method. All of 
the subjects were given necessary informed consents for 
their participation. The ethical guidelines approved by the 
school ethical board were strictly followed during the 
conduct of this study.  

b).Electrode Placement 
Three pairs of pre-gelled Ag/AgCl electrodes were placed on 
the subject's upper arm muscles (channels 1 and 2) and 
frontal region of the subject's head (channel 3 which is near 
Fp1 and Fp2) in a differential configuration to obtain the 
highest signal amplitude: 
• Channel 3: based on [8], one pair of electrodes was 

placed on the subject's forehead region, close to the Fp1 
and Fp2 regions in the international 10-20 electrode 
placement system for EEG recording. This channel is 
responsible for extracting the affective measures and 
cues based on the ACE scheme.  

• Channels 1 and 2: The subject's Biceps and Triceps 
muscles were responsible for generating the movement 
commands for manipulating the virtual forearm.  

c).Off-line Data Collection Protocol 

In each recording session, the volunteer was asked to sit on a 
comfortable chair. For right-handed subjects, their left hands 
were used in the experiment and vice versa. Then, the 
prompt forearm and wrist were fixed using an adhesive strap 
to prevent movements in the elbow and wrist joints. Before 
each recording session, the volunteer was trained to generate 
two different isometric myoelectric signals using Biceps and 
Triceps muscles. Then, the subject was asked to take a rest 
and try to relax for a period of five minutes. After this 
period, the quiescent bioelectric signals from all three data 
channels were recorded for a one minute period, while he 
was still resting.  
     These quiescent signals were used to determine the on-set 
threshold to distinguish between the rest (no-action) and 
active states of the EMG classifier and also determine the 
baseline for estimating the mental workload. Then, the 
volunteer was asked to perform one of the mentioned 
isometric contractions moderately respect to maximum 
voluntary contraction level for each trial. The recording 
period in each trial was started 1 second after the beginning 
of the movement–to eliminate the transient effect of the 
EMG–and ended right after 2 seconds from the beginning of 
the recoding.   

     After a two-second rest, he was asked to repeat the 
movement again. The above movement-rest task was cycled 
10 times. The resting period was chosen empirically to 
eliminate the fatigue effect during training. For each subject 
and based on the above protocol, the recording session took 
about 10 minutes. 

d).Data Processing 

The acquired raw data from channels 1 and 2 were passed 
through parallel Butterworth digital filter banks with 
predefined frequency characteristics from 30 Hz to 450 Hz 
to obtain the desired frequency bandwidth for the EMG. 
These signals were used to establish the physical interaction 
between the virtual forearm and the user. Furthermore, a 
band-pass filter (8 Hz–13 Hz) was employed on the raw data 
from channel 3 to select the EEG Alpha range.  
By considering our real-time approach and referring to some 
detailed studies, a 256 ms non-overlapped segment length 
for channels 1 and 2 was chosen for our experiments [8]. 
Then, the RMS of the bioelectric-signals  from channels 1 
and 2 were calculated and normalized, and transformed to a 
non-linear simple feature space using a logarithm transform 
function within a non-overlapping window of 256 msec. 
The acquired data from channel 3 (affective channel) was 
passed through an 8 Hz–13 Hz band-pass filter to select the 
EEG Alpha range. The filtered data from channel 3 was 
divided into non-overlapped 128-msec time slots. Then, the 
logarithm of energy entropy ሺܪ௅௢௚ா௡ሻ (hereafter, entropy or 
statistical entropy) for each time slot is calculated using the 
same method as described in [9]: ܪ௅௢௚ா௡ ൌ  െ ∑ ሺ݈݃݋ଶሺ ௜ܲሺݔሻሻሻଶேିଵ௜ୀ଴        (1) 

where  ݔ  is the discrete random variable, N is the number of 
sampled data for  ݔ , and  ܲሺݔሻ is the probability distribution 
function of  ݔ . 

e).The Classifier 

According with the study of Mohammad Rezazadeh et al. 
[8], the input-output subtractive fuzzy clustering method was 
chosen as our classification approach to obtain a set of initial 
rules for the fuzzy inference system. Then, an Adaptive 
Neuro-Fuzzy Inference System (ANFIS) was employed for 
adjusting the obtained inference system's parameters. 

f).Real-time Adaptation Algorithm 

In this study, the classifier modifies itself according to the 
extracted features from channel 3. The HMI monitors the 
average ܪ௅௢௚ா௡of the subject's Alpha range within a 
predefined period (TTM: Time to Monitor) during the 
experiment. If the average entropy measure is beyond the 
predefined threshold within the TTM period, then the 
dimensional complexity and degree of disorder in the 
subject's Alpha sub-band is low. Thus, it can be concluded 
that the subject has an affordable mental workload while 
performing the requested task. Because the reduction of the 
subject's mental workload and an increase in performance 
are implied by the HMI, the classifier's performance 
(outputs) can be considered to be reliable and valid. Then, 
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algorithm I is applied to the valid input-output pairs: 
Algorithm I 

// Previous (Last)   Inputs-Outputs Pair from channel 1 and 2; I: Input; O: 
Output Զ = {IP-OP}; 
// New (Current) Inputs-Outputs Pair from channels 1 and 2  Գ = {IN-ON}; 
IF the average entropy channel 3 ≤ Entropy Validation Threshold Then 
{ 
   DO        // For Every New Input-Output pair 
   {  
   IF ((ԡIN୧ െIP୨ฮ  ൑ Valid Distance Threshold))AND((ON i= OP j)) THEN 
   // Euclidean distance between New and Previous input-output pair 

{ 
//Append those OLD Input-Output pairs to  set which meet the above 
criteria        Գ = Գ ْ ሼIP j- Op j}; 

         // Remove those Input-Output pairs from  Զ  which meet the above 
criteria 
        Զ = Զ ٓ ሼIP j- Op j};  

       } 

      END IF  Զ ൌ Գ;   // SET Զ  main set which contains valid datum    //Updating the importance factor for each input െ output pair in  Զ  
      //Select Data in Զ which has importance factor higher than predefined  
      //threshold (Զ active). The training algorithm will be applied to Զୟୡ୲୧୴ୣto  
      //obtain new fuzzy inference system (FIS) based on SFCM+ANFIS 
    IF (the new FIS outperforms old FIS for the testing set from  Զୟୡ୲୧୴ୣ), 
THEN 
         SET new FIS as main FIS of the system  
     END IF  
END IF 

     Algorithm I decides whether to save the input history by 
calculating the Euclidian distance between the old and new 
input data. If the old inputs are within the predefined 
Euclidean distance from the new inputs and the outputs are 
the same, then the old data will be appended into new input-
output pairs. However, appending old data to new ones may 
cause data redundancy and requires more storage space. 
Because the training time for the inference system increases 
in proportion to the size of the valid data set Զ , the size of 
the data should not be too large to cope with real-time 
constraints. To resolve the data size problem, an importance 
factor is designated to each data in  Զ .   
     After each TTM, the importance factor is decayed 
exponentially by using the forgetting rate (i.e., the new 
coming valid data has an importance factor equal to 1, and it 
is reduced for the next TTM period). The data in  Զ with a 
high importance factor is chosen as the active set Զ௔௖௧௜௩௘ . 
The SFCM + ANFIS method is then applied to  Զ௔௖௧௜௩௘  to 
obtain a new fuzzy inference system (FIS). If the new FIS 
outperforms the old FIS, it will be substituted for the old 
FIS. This process will recycle for the next TTM, if the 
channel 3 entropy level meets the described criteria. 

g). Online Experimental Protocol 

The experimental design was a within-subjects experiment 
with an interface control scheme as the factor. Prior to the 
online experiment, each participant was required to read 
through prepared training materials. An in-house virtual 
forearm which its kinematics and dynamics were selected 
based on Denavit-Hartenberg parameterization and Leva's 
study was used in this research. Each participant was asked 

to use two different interfaces for controlling the virtual 
forearm: Condition 1 and Condition 2. 
      In the Condition 2 interface, the control unit was not in 
the active mode, which means the inference system was not 
modified and updated according to algorithm I. On the other 
hand, in the Condition 1, the control unit was in the active 
mode. In addition, to remove the influence of the learning 
process as much as possible, the sequence of using the 
interfaces was counterbalanced and the time interval 
between the two experiments was set at two weeks.  
     After initial training of the classifier, the subject was 
asked to participate in an online 60-min experiment protocol. 
Meanwhile, the bioelectric signals from all of the data 
channels were recorded and processed as described in the 
above sections. The RMS of biceps and triceps activations 
was passed through the designed controller as a control 
command for virtual forearm. The 60-min experimental 
scenario was as follows: 
• Moving the virtual forearm end point to the ball's 

coordinates. 
• The ball will be attached to the virtual hand if it stays at 

the ball's coordinates for 2 seconds. 
• Moving the virtual forearm accompanied by the ball to 

the basket’s position. 
• Release the ball by staying at the basket's position for 2 

seconds (Fig. 1). 
    . Each time the subject performed the above task properly, 
he gained a positive score and the corresponding completion 
time was simultaneously recorded. Then, the ball and basket 
positions were set randomly within the virtual environment 
for the next trial. The 60-minute experimental period was 
divided into three 20-minute time slots and each time slot 
had a different forearm movement speed. The speed levels 
were set in the following order for a complete 60-min 
experimental period: normal, slow, and fast.  
 

III. RESULTS AND ANALYSIS 

a). Performance Metrics:  

Table 1 shows the objective performance metrics (obtained 
score and completion time) achieved by the healthy subjects 
under two different experimental conditions: one is with 
real-time adaptation (Condition 1) and another is without 
real-time adaptation (Condition 2). It should be noted that 
the myoelectric controller in Condition 2 was performed as a 
traditional non-adaptive myoelectric controller did. It is clear 
that by using the affective measures feedbacks to update the 
inference system, the subjects achieved higher scores in 
Condition 1 (p<.001). In addition, the score and completion 
time were highly correlated with each other (r = -0.93, p < 
0.001), because the score increased in a case where the 
subject could complete more tasks at a shorter time.  

b). Physical Workload and Muscular Fatigue:  

Furthermore, the obtained score and completion time 
depended on the degree of muscular fatigue imposed by the 
interface.  
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Fig. 1 A subject during task performance (left) ;Snapshot of virtual forearm 

(right) within virtual environment. 

Table 1 Objective performance metrics achieved by the healthy subjects 
under the ACE-on and ACE-off states 

 
In a fatigued muscle, the fibers fire in a more 

synchronized way to compensate for the loss of muscle 
strength and exert the force adequate to handle the task. 
Therefore, the entropy in the fatigued muscle decreases. 
Table 1 shows that the slope of EMG entropy reduction in 
Biceps and Triceps muscles is about 15% (average of all 
time slots) lower in the Condition 1 in comparison with the 
Condition 2. This means that by using the affective 
feedbacks, the degree of muscular fatigue will be reduced. 
The slopes of the Biceps and Triceps entropies are also 
negatively correlated with the obtained score (r = -0.91 for 
Biceps and r = -0.82 for Triceps).  

The average decreasing rate of EMG entropy in channels 
1 and 2 shows that these metrics are lower in the normal 
speed level compared to the other levels. In addition, more 
muscular fatigue occurs during the transition from the 
normal speed level to the slow and fast speed levels. It 
should be noted that these results can also be achieved by 
monitoring EMG amplitude or middle frequency.  

c). Mental Workload:  

Table 1 shows that by using the affective feedbacks and real-
time adaptation algorithm, the slope of the EEG Alpha range 
entropy remained in the same range. However, in Condition 
2, this slope increased as the level of difficulty increased. 
The Alpha range entropy reduction (or retention) means the 
subject's brain worked in a more organized and less complex 
way (see Section 1.3). In addition, the Alpha band entropy is 

negatively correlated with the obtained score during the 
experiment (r = -0.83, p < 0.05).  
 

IV. CONCLUSION 

In this study, we proposed a real-time adaptable human 
machine interface (HMI) for controlling a virtual forearm 
based on the affective states of a user. The proposed HMI 
attempts to adapt itself to its user's affective status while the 
user is trying to undertake the experiment. It is clear that, 
beside physical fatigue, as long as the Alpha entropy 
increasing rate is less than a predefined threshold (entropy 
validation threshold), it can be used as an indication of the 
normal mental workload during the task operation and the 
reliability of the classifier's outputs. Furthermore, despite the 
increasing slope of the EMG entropy during the experiment, 
the slope of the Alpha range entropy remained the same as 
Condition 1.  However, this phenomenon did not occur when 
the affective control scheme had the inactive status. In this 
case, the slope of the Alpha band increased simultaneously 
with muscular fatigue. We can conclude that by using the 
affective control scheme, the degree of mental demand 
remains on the same scale. In other words, the interface does 
not cause the subject a mental overload when the affective 
control scheme is employed. It is a mixed initiative 
adaptation by which the control unit collaborates with the 
user. Thus, the usability of the proposed HMI will be 
enhanced compared to conventional HMIs, which will 
increase the usability and performance of the interface 
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Experimental Metric 
For Healthy Subjects 

Experimental Time Slot
Normal 
Speed 

Slow Speed Fast  
Speed 

Score 
- Condition 1 
- Condition 2 
-  p-value 

 
113 ± 5  
102 ± 5  
<.001 

 
78 ± 7  
63 ± 6  
<.001 

 
92 ± 5 
78 ± 6  
<.001 

Completion Time  in ms  
- Condition 1 
- Condition 2 
-  p-value 

 
13 ± 3  
18 ± 5  
<.001 

 
31 ± 4  
35 ± 6  
<.001 

 
19 ± 3  
22 ± 3  
<.001 

Slope of Biceps EMG Entropy 
- Condition 1 
- Condition 2 
-  p-value 

 
-.19 ± .04  
-.24 ± .06  

<.001 

 
-.23 ± .04  
-.27 ± .03  

<.01 

 
-.21 ± .04  
-.22 ± .02  

<.01 
 Slope of Triceps EMG 
Entropy 

- Condition 1 
- Condition 2 
-  p-value 

 
-.14 ± .03  
-.16 ± .04  

<.001 

 
-.17 ± .03  
-.19 ± .03  

<.05 

 
-17 ± .03  
-.18.02  

<.05 

Slope of Alpha band Entropy 
- Condition 1 
- Condition 2 
-  p-value 

 
.03 ± .01  
.07 ± .04  

<.001 

 
.04 ± .02  
.22 ± .03  

<.001 

 
.04 ± .02  
.19 ± .02  

<.001 
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