
  

  

Abstract—Many stroke patients are subject to limited hand 
functions in the paretic arm due to a significant loss of 
Corticospinal Tract (CST) fibers. A possible solution for this 
problem is to classify surface Electromyography (EMG) signals 
generated by hand movements and uses that to implement 
Functional Electrical Stimulation (FES). However, EMG 
usually presents an abnormal muscle coactivation pattern 
shown as increased coupling between muscles within and/or 
across joints after stroke. The resulting Abnormal Muscle 
Synergies (AMS) could make the classification more difficult in 
individuals with stroke, especially when attempting to use the 
hand together with other joints in the paretic arm. Therefore, 
this study is aimed at identifying the impact of AMS following 
stroke on EMG pattern recognition between two hand 
movements. In an effort to achieve this goal, 7 chronic 
hemiparetic chronic stroke subjects were recruited and asked 
to perform hand opening and closing movements at their 
paretic arm while being either fully supported by a virtual 
table or loaded with 25% of subject’s maximum shoulder 
abduction force. During the execution of motor tasks EMG 
signals from the wrist flexors and extensors were 
simultaneously acquired. Our results showed that increased 
synergy-induced activity at elbow flexors, induced by 
increasing shoulder abduction loading, deteriorated the 
performance of EMG pattern recognition for hand opening for 
those with a weak grasp strength and EMG activity. However, 
no such impact on hand closing has yet been observed possibly 
because finger/wrist flexion is facilitated by the shoulder 
abduction-induced flexion synergy. 

I. INTRODUCTION 
BNORMAL muscle synergies have been described as 
stereotypical coactivation pattern between certain 

groups that result in a loss of independent joint control 
following stroke induced brain injury. One example is the 
pronounced coupling between shoulder abduction and elbow 
flexion [1]-[2]. Because of the expression of this so-called 
flexion synergy, when the loads on shoulder progressively 
increase in individuals with stroke, an increased obligatory 
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activity from hand/wrist flexors starts to emerge. As a result 
of both paralysis and the flexion synergy, a more severely 
impaired individual with stroke can totally lose his/her 
voluntary control for hand opening and closing. The 
expression of these impairments following stroke may result 
in great difficulty in performing EMG-based detection of 
hand movements even when employing the latest signal 
pattern recognition techniques [3]-[6]. Therefore, the 
objective of this study will be trying to find out how 
Abnormal Muscle Synergy (AMS) affects pattern 
recognition for two different hand movements based on 
surface EMG in individuals with chronic stroke. The current 
study is anticipated to shed lights on three questions: 1) 
whether the EMG signal is a reliable source for the detection 
of hand movement intention after stroke; 2) How does AMS 
influence intention detection across stroke patients? 3) 
Depending on the outcome, are other signals such as EEG 
required to complement EMG-driven intention detection. 
These are essential issues that need to be addressed before 
development of any EMG-driven neural prosthetics aimed at 
regaining hand function in individuals with stroke.  

II. METHODS 

A. Participants 
A total of 7 chronic hemiparetic stroke subjects (age: 

55.29±8.04) with moderate to severe impairment were 
recruited for this study. The level of motor impairment was 
evaluated using the Fugl-Meyer motor assessment index [7] 
of all the stroke participants. This assessment includes the 
evaluation of tendon reflexes and performance of proximal 
and distal voluntary movements of the impaired arm. The 
test was administered by a licensed physical therapist.  
Subjects with a score around 60/66 were classified as mildly 
impaired, while those with a score less than 20/66 as 
severely impaired. Relative Grasp Strength (RGS) was also 
measured during each individual’s first visit. Every 
participant was asked to grasp a hand dynamometer as hard 
as possible while sitting in a chair and maintaining his/her 
shoulder at 90° shoulder abduction and 90° elbow flexion. 
RGS is defined as the ratio of grasp strength of paretic arm 
to non-paretic arm. Clinical information regarding the stroke 
subjects is listed in Table I. All participants provided written 
consent prior to participation in the study that was approved 
by the Institutional Review Board of Northwestern 
University and in compliance with the principles of the 
Declaration of Helsinki. 
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B. Experiment Setup 
Participants were asked to sit in a Biodex chair (Biodex 

Medical Systems, Shirley, NY) and restrained by a pair of 
belts crossing their chest and abdomen to limit any 
unnecessary movements of trunk and pelvis while the arm 
was strapped to a forearm-hand orthosis attached to the 
ACT3D. The ACT3D can generate different levels of shoulder 
loads to induce AMS (Fig. 1). Four pairs of EMG active 
differential surface electrodes each with a 1 cm 
interelectrode distance (16-channel Bagnoli EMG System; 
Delsys, Boston, MA) were placed on Extensor Digitorum 
Communis (EDC), Extensor Carpi Radialis (ECR), Flexor 
Digitorum Profundus (FDP), Flexor Carpi Radialis (FCR) 
respectively before the arm was strapped to the orthosis. The 
paretic arm was manually positioned at 75° shoulder 
abduction, 40° shoulder flexion and 90° elbow flexion. An 
avatar of the arm, which mimics the arm position and 
movement, was shown on a flat screen display placed in 
front of the participants so they were able to position their 
hand right on the target following the display of a cue. 

C. Data Acquisition, Algorithm and Processing 
    After subject’s arm was placed on the orthosis, a specific 
load level was calculated according to the subject’s 

maximum shoulder abduction force, which was measured 
using a six-freedom cell. In this study, subjects were asked 
to open and close their affected hand under two conditions, 
either with their arm being completely supported on a haptic 
table generated by the robot or at 25% of maximum shoulder 
abduction (Table II) requiring the participant to lift their arm 
of the haptic table prior to their two hand movements. Both 
arm lifting and hand movements were cued by a spherical 
target shown on the display with three colors indicating rest, 
lift or movement, respectively. The experiment consists of 6 
sessions, each of which includes 4 sets of 11 randomized 
trials, covering 66 trials of hand opening and 66 trials of 
hand closing for each supporting condition. In order to avoid 
fatigue, a 10-minute break was offered between sessions. All 
EMG signals were manually segmented and concatenated 
according to the onset and termination of the movement 
(Fig. 2). A 256-ms long sliding window that was 
implemented from the beginning to the end of the segmented  
EMGs with a 128-ms increment and a 128-ms overlap 
between adjacent windows. Within each moving window, 
signal features in time domain were extracted based on the 
method proposed by Hudgins [8]. This method calculated 
four parameters in the time domain: mean absolute value, 
zero crossings, slope sign changes and waveform length [9]. 
Therefore, in each moving window, 16 feature parameters (4 
channel EMGs times 4 parameters) were used to represent 
myoelectric firing pattern and then send to a linear 

Figure 1. Experiment Setup 

Table I 
CLINICAL INFORMATION OF PARTICIPANTS 

 Gender Age Affected 
Hand 

Years FM 
Score 

RGS 

1 M 61 L 3 20 0.242 
2 M 40 L 5 36 0.260 
3 M 62 L 7 34 0.251 
4 M 59 R 9 14 0.246 
5 M 54 L 3 25 0.199 
6 F 61 R 6 16 0.197 
7 M 50 L 11 12 0.128 

 
Relative Grasp Strength (RGS) is defined as the ratio of grasp strength 
of paretic arm to non-paretic arm. 

 
Table II 

TWO LOADING LEVELS OF SHOULDER ABDUCTION 
Loading level Description Illustration 

0% Supported by the force that equals to the weight of the subject’s arm, so 
the subject will experience a weightless arm. However, the subject cannot 
push down to obtain extra supporting force to facilitate hand extension.  

 
25% Loaded by the force that amounts to 25% of the weight of the subject’s 

arm. Subjects have to lift a weight that equals to 125% of their arm. 
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discriminant classifier (LDC) to be recognized as either a 
hand opening or hand closing tasks. LDC is aimed at 
finding a linear combination of features which characterize 
or separate two or more classes of objects or events.  LDC 
approaches a classification problem based on two 
assumptions (x is features in training set,  y is classification 
set): 1) the conditional probability density functions 
p x y = 0  and p x y = 1  are both normally distributed 
with mean and covariance parameters µμ!,   !!! and 
µμ!,   !!! , respectively; 2) The class covariances are 

identical, so   !!! = =   !!! . Therefore, the decision 
criterion for LDA is w ⋅ x < c, for some threshold c, where 
w = u! − u!!!

   . So classification of an input x as in y is 
a function of the linear combination of the known 
observations. For each of the single hand movements, if the 
outcome of the judgment from the moving windows for hand 
opening outnumbered those for hand closing, this piece of 
signal was counted as a hand-opening task, and vise versa. 

III. RESULTS 
Hand movement classification rates for the 2 different 

shoulder loads in each of subjects were listed in Table III in 
the format of ‘the number of trials that were correctly 
classified’/’the number of total available trials for a specific 
condition.’ Classification rates across all seven individuals 
with stroke for both abduction levels were further plotted in 
Fig. 3. Statistical t-test analysis investigating the effect of 
shoulder abduction loading on overall classification rates for 
hand closing did not reach significance across subjects and 
was 98% when supported and 99% during shoulder loading. 
Conversely, for hand opening results do reach significance 
and the overall mean classification rate is 99% when 
supported on the haptic table and 93% during shoulder 
abduction loading. 

When we divide the subjects in two groups based on grip 
strength (above and below 0.23), we did observe differences 
in the recognition rate for hand opening, as shown in figure 
3. Subjects in Group I (> 0.23) showed consistently high (> 
95%) recognition rate for both hand opening and closing 
regardless of shoulder loading. In contrast, recognition rates 
for hand opening in participants in Group II are more 
sensitive to changes in shoulder loading as recognition rates 

dropped from 10% to 16%.  

IV. DISCUSSION 

A. EMG Signal and Hand Movement Intention Detection 
This study provides high recognition rates for hand 

opening and closing from moderately to severely impaired 
stroke subjects. This may be due to the fact that hand 
opening and closing represent relatively simple movements 
at the level of the hand. The original signals from all stroke 
subjects show consistently weaker EMG signals from 
extensors as compared to flexors therefore classification of 
hand opening and closing may rely mainly on the signals 
from two flexors.  Weak muscle innervations in extensors 
are a common problem in individuals with stroke [2], [10]. 
Such a problem is likely to become critical when additional 
movements are to be classified. 

One solution to this dilemma may be the introduction of 
EEG to compensate the loss of extensors EMG signals. 
Signal acquisition directly from Central Nervous System 
(CNS) is likely to be less affected by AMS and thus may 
supply supplementary information to classify additional 
wrist/finger movements [11]. 

Another explanation of our results is probably related to 
the inclusion of stroke subjects with less muscle weakness. 
Even though these individuals are equally incapable 
performing the hand opening and closing tasks, they are able 
to generate stronger EMG signals that are likely to benefit 
pattern our classification analysis.  

B. Possible Neural Mechanism 
Our study demonstrates that shoulder loading has a 

distinctive impact on subjects from the second group. The 
sensitivity to load changes increases for the subjects with a 
smaller RGS and less EMG signal strength. These 
preliminary results indicate that the success of intention 
detections may be linked to overall motor impairment as 
measured with FMA and RGS; however, a great participant 
number is required to conclusively answer this question. 

Although the current pattern recognition method has 

Figure. 2 EMG signal segmentation and concatenation. A 256ms-long 
sliding window slides which moves over a signal sequence with at a 
128ms increment each time. Four feature parameters are extracted 
within the window and then go transfered to classifier. 

TABLE III 
CLASSIFICATION RESULTS 

Subject Group Level Open Close 
1 I 0% 30/30 33/33 
  25% 30/30 32/32 
2 I 0% 32/32 31/32 
  25% 32/32 32/32 
3 I 0% 29/29 30/30 
  25% 30/30 30/30 
4 I 0% 30/31 30/30 
  25% 30/31 30/30 
5 II 0% 27/28 27/28 
  25% 24/30 30/30 
6 II 0% 26/26 28/28 
  25% 24/28 27/27 
7 II 0% 29/29 26/28 
  25% 26/29 25/27 

 
Group I: subjects with RGS > 0.23; Group II: subjects with RGS ≤ 0.23 
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shown great successes in healthy and amputee subjects who 
can still activate their muscles, the same is not necessarily 
expected in individuals with stroke. Yet our results have 
shown that even in the case of a compromised CNS the 
algorithm still preforms well albeit for a simple set of motor 
tasks. This could be seen from Group I in Fig. 3, both hand 
opening and closing intention of these individuals can still 
be easily detected presumably because the loss of their 
neural substrates like CST fibers is not as significant as in 
individuals from group II. In the Group II individuals where 
hand strength is more impaired, possibly because of an 
additional loss of CST tract fibers, the detection of intention 
is less successful. As mentioned earlier these individuals, 
may benefit from a combination of both central and 
periphery signals for intention detection. 

V. CONCLUSION 
This study demonstrates that shoulder abduction loading 

can have an impact on the detection of hand opening in 
stroke survivors with a weak RGS and associated EMG 
activity. At the same time, hand closing will not be affected 
to the same extent as hand opening and therefore still results 
high recognition rates even in more paralyzed individuals. 
Finally, in individuals with extreme weak peripheral signals, 
such as during the hand opening task, EEG-driven methods 
could be considered to augment detection rates as obtained 
with an EMG based pattern recognition approach. 
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Figure. 3 Comparison between hand opening and closing pattern recognition with either shoulder being fully supported or loaded with 25% arm weight. 
Group I (subject 1, 2, 3, 4) shows a consistently high rates for both opening and closing; while in Group II (subject 5, 6, 7) with a smaller RGS, lower 
recognition rates with a loaded arm were observed for hand opening only, but not for closing.   
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