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Abstract—Recent studies have highlighted the 

importance of system identification as an approach for 

assessing sensory processing in humans using 

electroencephalography (EEG). These studies typically 

use linear impulse response estimates of visual and, more 

recently, auditory function. These methods, which are 

known as the VESPA and AESPA (Visual/Auditory 

Evoked Spread Spectrum Analysis) respectively, have 

been found to be useful for studying sensory processing in 

both healthy populations and clinical groups and for 

studying the effects of cognition on sensory processing. 

While a nonlinear extension of the VESPA has been 

previously described, no such extension has yet been 

examined for the AESPA. This paper investigates such an 

extension and quantifies the relative contribution of 

linear and quadratic processes to the EEG in response to 

novel auditory stimuli. While the ability to accurately 

predict novel EEG is poor, it is highly significant, with a 

slightly, but again significantly, greater ability to predict 

using a quadratic model (r=0.0418) over a linear model 

(r=0.0361). 

I  INTRODUCTION 

A considerable amount of research has been done 

on the modelling of nonlinear time-invariant systems, 

most of which has been based on the general 

mathematical foundation of the Volterra-Wiener 

approach. The Volterra series was first studied by Vito 

Volterra around 1880 as a generalization of the Taylor 

series of a function and was used by Wiener (1958) to 

model the input-output relationship of a nonlinear 

system [1]. 

Several successful examples of the use of nonlinear 

modelling have been reported across different 

physiological domains, including those on the retina 

using inputs of stochastically varying electrical current 

[2] and light [3]. This approach has also been applied 

to scalp recorded EEG and in particular the visual 

evoked potential [4].  
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Recently, our group has extended this method to allow 

for the input of stimuli with more flexible temporal 

statistics [5]. Specifically, in previous studies 

researchers took advantage of the fact that the system 

transfer functions could be obtained by cross-

correlating the input and output signals, which was 

possible as long as the input signals had the property 

that their autocorrelation function resembled a delta 

function. 

In contrast, our method, which is known as the 

VESPA/AESPA (Visual/Auditory Evoked Spread 

Spectrum Analysis)[5,6] utilizes the least squares 

algorithm to fit a response model of the how the human 

visual and auditory systems responds to stimulus 

changes and allows the use of more realistic input 

signals. These signals are typically presented to the 

brain by modulating the contrast or intensity of a visual 

or auditory stimulus while recording EEG [5,6]. 

Because the VESPA and AESPA in their linear forms 

have been shown to have useful application across a 

range of fields, including cognitive neuroscience [7, 8, 

9], clinical research [10] and fundamental research on 

sensory processing [11, 12], it is important to assess 

the ability of these linear methods to accurately model 

the system of interest and to assess the potential 

advantages of incorporating higher order modelling 

terms. We previously reported such an assessment in 

terms of the VESPA, which demonstrated that both the 

linear and quadratic VESPA models could predict 

novel EEG with only low accuracy, but in a highly 

significant way [13]. No statistical difference in the 

ability to predict was found between the linear and 

quadratic models. This paper aims to conduct a similar 

examination of the AESPA by quantifying how well 

the linear AESPA impulse response can predict the 

EEG in response to a novel stimulus and by how much, 

if at all, our approach is improved through the 

inclusion of second order terms in the AESPA analysis. 

 

II  METHODS 

A. Subjects 

11 subjects participated in the study (one female; 

aged 22–35 yr), all of whom had normal hearing. The 

experiment was undertaken in accordance with the 

Declaration of Helsinki. The Ethics Committee of St. 

Vincent’s University Hospital in Dublin approved the 
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experimental procedures and each subject provided 

written informed consent. These data were presented 

previously using only a linear analysis [6]. 

B. Stimuli and Experimental Procedure 

A Gaussian broadband noise (BBN) waveform, 

with energy limited to a bandwidth of 0–22.05 kHz 

was used as a carried signal. The amplitude of this 

carrier stimulus was modulated using Gaussian noise 

signals with uniform power in the range 0–30 Hz, i.e., 

at a rate of 60 modulations/s. This rate was chosen 

based on the fact that EEG power below 30 Hz is 

typically very low. Modulating signals with the desired 

statistical properties were precomputed and stored. 

Taking into account the logarithmic nature of auditory 

stimulus intensity perception, the values of these 

modulating signals (x) were then mapped to the 

amplitude of the audio stimulus x’, using the following 

exponential relationship 

x’ = 10
2x 

           (1) 

and normalized to between 0 and 1. It was expected 

that this would result in a more linear perception of 

audio intensity modulation. The modulating noise 

signal was then interpolated to give a smooth transition 

from one modulation amplitude to the next and stored.  

All subjects underwent ten presentations of the 

amplitude-modulated BBN stimulus using headphones 

with each presentation lasting 120 s. Subjects were 

instructed to keep their eyes open and to keep eye 

movements, blinks and other motor activity to a 

minimum for the duration of each run.  

 

C. EEG acquisition 

EEG data were recorded from 130 electrode 

positions, filtered over the range 0–134 Hz, and 

digitized at the rate of 512 Hz using a BioSemi Active 

Two system. Synchronization between the audio 

stimuli and the recorded EEG data was ensured by 

including the signal on the parallel port of the 

presentation computer, indicating the onset and offset 

of the stimuli, among the recorded signals. EEG data 

were digitally filtered with a high-pass filter, where the 

passband was > 2 Hz and with a -60 dB response at 1 

Hz and a low-pass filter with passband < 35 Hz and a -

50 dB response at 45 Hz. The data at each channel 

were rereferenced to the average of the two mastoids. 

 

D. Signal Processing 

The estimation of the AESPA is based on the 

assumption that the output EEG, y(t), consists of a 

convolution of the audio amplitude modulation signal, 

x(t), with an unknown impulse response w(τ), plus 

noise, i.e., 

                      .           (2) 

Given the known audio amplitude modulation signal 

and the measured EEG, we obtain w(τ), i.e., the 

AESPA, by performing linear least squares estimation 

(see [5] for details).  

The values of x(t), were assumed to be 

constant across each 16.67 ms modulation period and 

the initial modulation values, i.e., the linear values 

obtained prior to the exponential mapping, were used. 

This seemed reasonable under the assumption that the 

exponential mapping would actually result in a more 

linear intensity perception.  

The AESPA was estimated using a sliding window 

from 200 ms pre-stimulus to 400 ms post- stimulus that 

was advanced sample by sample. This window was 

chosen in order to present the AESPA using an interval 

similar to that typically used for plotting the average 

Auditory Evoked Potential (AEP). However, the 

meaning of the interval is slightly different (see [6] for 

details). It should also be noted that we restricted our 

analysis to just the fronto-central electrode site Fz, 

given the topographic distributions observed in 

previous AESPA studies [6]. 
 

E.  Quantification of Model Performance 

In order to quantify the AESPA method’s ability to 

accurately model the auditory system, we carried out 

the following analysis. Firstly, for each subject, we 

determined the linear AESPA and quadratic AESPA 

models by averaging the corresponding AESPAs over 

9 of the 10 runs undertaken by that subject. We then 

used the stimulus waveform from the one remaining 

run as input to these models in order to predict the 

output EEG for that run. We then computed Pearson 

correlation coefficients between the predicted output 

EEG and the actual recorded EEG for that run. This 

process was repeated 10 times for each subject by 

rotating the run to be tested each time and the 

correlation coefficients were averaged within each 

subject, excluding those runs where the resulting 

correlation was not found to be significant at the p < 

0.01 level. 

 

III  RESULTS 

Fig. 1 plots both the linear and quadratic AESPA 

responses averaged across all subjects at fronto-central 

electrode location Fz, referenced to the average of the 

two mastoids. The nonlinear AESPA is plotted on a 

color scale with two time axes. The value of the 

AESPA at any point on this 2-D plot represents the 

strength of the relationship between the EEG at any 

given time point and the interaction (product) of the 

two inputs at the preceding times denoted by the x and 
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y axes. Qualitatively the diagonal of the quadratic 

responses seems to be quite similar to the trajectory of 

the linear model, which is not surprising. However, it 

is interesting to note that there are some non-zero 

clusters off the diagonal. These include negativities 

indicating a relationship between stimuli at 80 and 120 

ms preceding the EEG and some positive ridges 

between about 80 and 120 ms just off the diagonal. 

Table 1 lists the percentage of test trials that 

were predicted significantly for both linear and 

nonlinear models for each subject, where we  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Linear (upper) and quadratic (lower) AESPA responses at 

electrode location Fz, averaged across all subjects. 

determined significance using a threshold of p < 0.01. 

A considerable number of trials were found to be 

significant with an average of ~80% for the linear 

model and an average of ~90% for the quadratic 

model. While the number of significantly predicted 

trials was high, the strength of the correlations was 

low. Table 1 also shows the average Pearson 

correlation coefficients between the recorded EEG 

from one of the ten trials for each subject and the 

predicted EEG based on the other nine trials. This 

average was carried out averaging only those test runs 

where a significant result was found. The average 

across all subjects was r=0.0361 for the linear case and 

r=0.0418 for the nonlinear case. It should be noted that 

even for those subjects for whom the same numbers of 

trials were found to be significant using the linear and 

nonlinear models, the correlation coefficients were 

increased when using the nonlinear model. A paired t-

test revealed that correlation coefficients using the 

nonlinear model were higher than those using the 

nonlinear model (p = 0.0019).  

Fig. 2 shows 1000 ms worth of recorded EEG 

and the corresponding linear and quadratic model 

predictions for the best performing subject (subject 5). 

The EEG plotted is from run 1 for that subject, while 

the model predictions are based on the AESPAs 

obtained using runs 2-10 for that subject.  

 
TABLE I 

PERCENTAGE OF TRIALS WHERE PREDICTED EEG (USING A MODEL 

FIT FROM 9 TRIALS) AND RECORDED EEG (FROM THE 10TH
 TRIAL) 

WERE SIGNIFICANTLY CORRELATED. PEARSON CORRELATION 

COEFFICIENTS FOR ONLY THOSE RUNS WHERE A SIGNIFICANT 

RESULTS WAS FOUND ARE ALSO SHOWN 

Subject % of 

significant 

linear 

runs 

% of 

significant 

nonlinear 

runs 

rlinear rnonlinear 

1 100% 100% .0495 .0536 

2 70% 80% .0341 .0380 

3 80% 90% .0322 .0365 

4 90% 90% .0470 .0508 

5 100% 100% .0519 .0602 

6 40% 60% .0182 .0259 

7 60% 90% .0236 .0288 

8 90% 100% .0272 .0350 

9 100% 100% .0304 .0315 

10 70% 80% .0273 .0305 

11 90% 90% .0444 .0619 

MEAN 80.1% 89.1% .0361 .0418 

 

IV  DISCUSSION 

We have obtained linear and quadratic models of the 

auditory system based on spread spectrum stimulation 

of that system while recording EEG. The acquired 

models have been shown to have significant predictive 

power by comparing their output in response to novel 

stimuli with actual recorded EEG to those novel 

stimuli.  

Despite the fact that such a large percentage of 

correlation tests carried out were found to be 

statistically significant, the correlation values obtained 

were not remarkably high. This was not terribly 

surprising given the notoriously noise nature of the 

EEG signal.  Because of the lack of spatial resolution 

on the scalp as a result of volume conduction and the 

extremely deleterious effects of any muscle movements  
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Fig. 2. One second of recorded EEG from the first 120s run of 

subject 5 at electrode location Fz and the corresponding model 

predictions for that run from the linear and quadratic models. The 

models were fit using data from runs 2-10 of subject 5. 

(including blinks), one would not expect a signal 

originating from, presumably, just auditory cortex to be 

completely predictable. However, Fig. 2 gives a sense 

of how, in some instances, the AESPA method can 

significantly predict previously unseen EEG.  

Furthermore, unlike in the case of the VESPA [13], 

we have found a small, but significant improvement 

with the addition of a second order to our modelling 

approach. This suggests that there are meaningful 

interactions between stimuli at different time points 

that affect the subsequent EEG activity. The fact that 

evidence for nonlinear processing exists is not at all 

surprising given the necessarily nonlinear nature of real 

world objects such as the brain. In fact, the fact that the 

auditory system responds in a highly nonlinear way to 

auditory intensity has been well documented [14]. We 

attempted to correct for some of this nonlinearity using 

our mapping (1), however many other types of 

nonlinearity exist in the brain, such as saturation and 

burst firing. 

Having made this point, it is interesting to contrast 

our results with those obtained using the VESPA 

stimulus where although the average r value was 

higher for the quadratic model than the linear model, 

no statistically significant difference was found. That 

study used fewer subjects (seven), and as such, the lack 

of an effect may have been due to the lack of statistical 

power. Another possible reason for this is that over the 

range of contrast levels studies in [13], the early visual 

system may behave in a relatively linear manner [15]. 

In general the ability to predict novel EEG in 

response to auditory stimuli was poorer than previously 

found in vision [13]. This likely stems from the low 

signal-to-noise ratio of the AESPA response compared 

with that of the VESPA. Previous work has suggested 

that this may be due to the fact that many cells in 

auditory cortex appear to be specialized for processing 

discrete events [6], a fact that likely has an 

evolutionary basis. 

V  CONCLUSION 

Use of the linear AESPA method and its quadratic 

extension has enabled us to model how the auditory 

system responds to novel amplitude-modulated stimuli. 

When modelling single trial EEG, a small, but 

significant improvement was observed when using the 

quadratic model compared with the linear model. Some 

explanations for this have been offered and some 

suggested improvements to the model have been 

suggested. This work suggests the AESPA as a useful 

framework with which to investigate characteristics of 

the auditory system, both in the healthy brain and in 

the case of neurological or psychiatric disorder. 
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