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Abstract— Understanding the way in which groups of cortical
neurons change their individual and mutual firing activity during
the induction of general anesthesia may improve the safe usage
of many anesthetic agents. Assessing neuronal interactions within
cell assemblies during anesthesia may be useful for understanding
the neural mechanisms of general anesthesia. Here, a point process
generalized linear model (PPGLM) was applied to infer the functional
connectivity of neuronal ensembles during both baseline and anesthesia,
in which neuronal firing rates and network connectivity might change
dramatically. A hierarchical Bayesian modeling approach combined
with a variational Bayes (VB) algorithm is used for statistical inference.
The effectiveness of our approach is evaluated with synthetic spike train
data drawn from small and medium-size networks (consisting of up
to 200 neurons), which are simulated using biophysical voltage-gated
conductance models. We further apply the analysis to experimental
spike train data recorded from rats’ barrel cortex during both active
behavior and isoflurane anesthesia conditions. Our results suggest that
that neuronal interactions of both putative excitatory and inhibitory
connections are reduced after the induction of isoflurane anesthesia.

I. INTRODUCTION

General anesthesia is a drug-induced state of reversible coma
that is essential for performing most surgeries and many medical
procedures [3]. In the United States, nearly 60,000 patients receive
general anesthesia each day for surgical and medical procedures [1].
However, despite its ubiquity, the mechanisms by which anesthetic
drugs induce the state of general anesthesia remains largely un-
known. Developing a detailed understanding of these mechanisms
may have significant functional implications for improved anesthe-
sia practice, such as the design of safer drugs, or alternate methods
of drug-delivery [3]. The study of general anesthesia from a systems
neuroscience perspective is an approach that holds promise, using in
vivo brain recordings to identify and assess alterations in neuronal
circuitry during different conscious states. Previous investigations
have used either non-invasive EEG or fMRI recordings to analyze
the neural responses during general anesthesia (e.g., [7], [8], [13]).

Here, we focus on the problem of assessing functional con-
nectivity of cell assemblies before or during general anesthesia
using invasive spike train recordings. For this purpose, we ap-
ply a previously proposed point process generalized linear model
(PPGLM) and variational Bayes (VB) algorithm [5], [6] to infer the
neural interactions between population of neurons in a simulated
network of size up to 100 neurons. The accuracy of our estimation
results is validated on multivariate spike train data generated from
a biophysical neuronal model under the baseline and anesthesia-
like conditions. We further extend our analysis to experimental
spike train data recorded from rats’ barrel cortex during both active
behavior and isoflurane (inhalational) anesthesia conditions.

II. METHODS

A. A Point Process Network Likelihood Model

A point process is a stochastic process with 0 and 1 observations.
For the cth point process, let yc1:T = (yc1, . . . , y

c
T ) denote the
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observed response variables during a (discretized) time interval
[1, T ], where yct is an indicator variable that equals to 1 if there
is a spike at time t and 0 otherwise. Therefore, multiple neural
spike train data are completely characterized by a multivariate point
process {yc1:T }Cc=1. To model the spike train point process data,
we used the following logistic regression model with the logit
link function. Specifically, let c be the index of target neuron, and
let i = 1, . . . C be the indices of trigger neurons. The Bernoulli
(binomial) logistic regression PPGLM is given by

logit(πt) = βcxt =

dX
j=0

βcjxj,t = βc0 +

CX
i=1

KX
k=1

βci,kxi,t−k (1)

where dim(βc) = d+1 (where d = C×K) denotes total number
of parameters in the augmented parameter vector βc = {βc0, βci,k},
and x(t) = {x0, xi,t−k}. Here, x0 ≡ 1 and xi,t−k denotes the
spike count from neuron i at the kth time-lag history window. Since
the spike count is nonnegative, therefore xi,t−k ≥ 0. Alternatively,
we can rewrite (1) as

πt =
exp(βcxt)

1 + exp(βcxt)
=

exp(βc0 +
Pd
j=1 β

c
jxj,t)

1 + exp(βc0 +
Pd
j=1 β

c
jxj,t)

(2)

which yields the probability of a spiking event at time t. It is seen
from (2) that the spiking probability πt is a logistic sigmoid function
of βcx(t); when the linear regressor βcx(t) = 0, πt = 0.5. Note
that βcx(t) = 0 defines a (d + 1)-dimensional hyperplane that
determines the decision favoring either πt > 0.5 or πt < 0.5.

Equation (1) essentially defines a spiking probability model for
neuron c based on its own spiking history, and that of the other neu-
rons in the ensemble. It has been shown that such a simple spiking
model is powerful in inferring the functional connectivity among
neuronal ensembles [4], [12], and in predicting single neuronal
spikes from humans and primates based on collective population
neuronal dynamics [15]. Here, exp(βc0) can be interpreted as the
baseline firing probability of neuron c. Depending on the algebraic
(positive or negative) sign of the coefficient βci,k, exp(βci,k) can
be viewed as a “gain” factor (dimensionless, > 1 or < 1) that
influences the current firing probability of neuron c from another
neuron i at the previous kth time lag. A negative value of βci,k
will strengthen the inhibitory effect and move πt towards the
negative side of the hyperplane; a positive value of βci,k will enhance
the excitatory effect, thereby moving πt towards the positive side
of the hyperplance. Using this method, two neurons are said to
be functionally connected if any of their pairwise connections is
nonzero (or the statistical estimate is significantly nonzero).

Let θ = {β1, . . . ,βC} be the ensemble parameter vector, where
dim(θ) = C(1 + d). By assuming that the ensemble neuronal
spike trains are mutually conditionally independent, the network
log-likelihood of C-dimensional spike train data is given by [12]:

L(θ) =

CX
c=1

L(βc)

=

CX
c=1

TX
t=1

yct log πt(βc) + (1− yct ) log πt(1− βc) (3)
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Note that the index c is uncoupled from each other in the network
log-likelihood function, which implies that we can optimize the
function L(βc) separately for individual spike train observations
yc1:T . For simplicity, from now on we will drop off the index c at
notations yct and βc when no confusion occurs.

B. Hierarchical Bayesian Modeling and VB Inference

It is known that maximum likelihood inference is prone to over-
fitting by using a complex model. To address this issue, instead of
maximizing the log-likelihood log p(y|x,β), we aim to maximize
the marginal log-likelihood log p(y|x) or its lower bound L̃:

log p(y|x) = log

Z Z
p(y|x,β)p(β|α)p(α)dβdα

≥
Z Z

q(β,α) log
p(y|x,β)p(β|α)p(α)

q(β,α)
dβdα ≡ L̃, (4)

where p(β|α) denotes the prior distribution of β, specified by the
hyperparameter α. The variational distribution has a factorial form
such that q(β,α) = q(β)q(α), which attempts to approximate
the posterior p(β,α|y). This approximation leads to an analytical
posterior form if the distributions are conjugate-exponential. The
use of hyperparameters within the hierarchical Bayesian estimation
framework employs a fully Bayesian inference procedure that
makes the parameter estimate less sensitive to the fixed prior (unlike
the empirical Bayesian approach) [14]. In our previous study [6],
it was found that the VB approach produced excellent performance
while dealing with sparse spiking data.

Specifically, we assume the following hierarchical Bayesian
structure for the PPGLM [5], [6]:

p(β|α) ∼ N (β|µ0,A
−1) ∝ exp

“
− 1

2
(β − µ0)

>A(β − µ0)
”
,

p(α) =

dY
j=0

Gamma(αj |a0, b0) ,

where Gamma(αj |a0, b0) = 1
Γ(a0)

ba00 αa0−1
j e−b0αj and A =

diag{α} ≡ diag{α0, . . . , αd}. Here, we fix the hyperparameter
as µ0 = 0 to favor a sparse solution.

Let ξ = {ξt} denote the data-dependent variational parameters
(that are dependent on the input variables {xt}). In light of the
variational approximation principle [10], one can derive a tight
lower bound for the logistic regression likelihood, which will be
used in the VB inference. Specifically, applying the VB inference
yields the variational posteriors q(β|y) and q(α|y):

log q(β|y) = log p̃(β, ξ) + Eq(α)[log p(β|α)]

= logN (β|µT ,ΣT ), (5)

log q(α|y) = Eq(β)[log p(β|α)] + log p(α)

= log
n dY
j=0

Gamma(αj |aT , bj,T )
o
, (6)

which follow from updates from conjugate priors and posteriors
for the exponential family (Gaussian and Gamma distributions).
The derivations of {µT ,ΣT } and {aT , bj,T } in equations (5) and
(6) are given in [5]. The term p̃(β, ξ) appearing in (5) denotes the
variational likelihood bound for logistic regression:

log p(β, ξ) ≥ log p̃(β, ξ) =

TX
t=1

“
log σ(ξt)−

ξt
2

+ φ(ξt)ξ
2
t

”
−[β>(φ(ξt)xtx

>
t )β] + β>

“
xtyt −

1

2
xt
”
, (7)

where σ(·) is a logistic sigmoid function. The variational likelihood
bound at the right-hand side of (7) has a quadratic form in terms of
β, and therefore it can be approximated by a Gaussian likelihood.
We can also further derive the variational lower bound of marginal
log-likelihood L̃ (see [5]). The VB inference alternately updates (5)
and (6) to monotonically increase L̃. The criterion for algorithmic
convergence is set until the consecutive change of L̃ is sufficiently
small. Upon completing the VB inference, the confidence bounds
of the estimates can be derived from the posterior mean and the
posterior variance.

C. Measuring Goodness-of-fit of the Model

The goodness-of-fit of the point process models estimated from
all algorithms is evaluated based on the Kolmogorov-Smirnov (KS)
test [6]. The KS statistics are used to measure the maximum
deviance between the empirical cumulative distribution function
(cdf) of the time-rescaled data and the theoretical uniform cdf. If
the curve falls within the 95% of the confidence intervals (CIs) of
the KS plot, it suggests that the model has a sufficiently accurate
characterization of the spike train data. In simulation studies, in
addition to the KS test, we also compute the mis-identification
error rate, which is the sum of the the false positive (FP) and false
negative (FN) rates.

III. DATA AND RESULTS

A. Simulations

In simulating a neuronal network with excitatory pyramidal
cells and inhibitory interneurons, we used the single-compartment
voltage-gated conductance models of the Hodgkin-Huxley type [9].
Specifically, the membrane potential of each cell is governed by a
system of nonlinear differential equations of the form [11]:

cm
dV
dt

= −
X

Iion −
X

Isyn + Iapp (8)

where Iion, Isyn and Iapp denote, respectively, the ionic, synaptic
and external applied currents specific to each cell, and cm is the
membrane capacitance. Ionic currents are induced by the flow of
charged particles across the cell membrane and are described by
the equation

Ix(V ) = gxm
phq(V − Ex) (9)

where ṁ = m∞(V )−m
τm(V )

and ḣ = h∞(V )−h
τh(V )

. The parameters gx and
Ex are constant, while p and q are non-negative integers. The term
gxm

phq is the ionic conductance and determines the behavior of the
current as the voltage deviates from equilibrium. The most common
ionic currents are related to the flow of sodium and potassium,
which are responsible for generating action potentials (i.e., spikes).
In addition, connectivity between neurons is established through
the synaptic currents Isyn. Two such currents are considered herein:
the excitatory AMPA current (IAMPA) and the inhibitory GABAA

current (IGABA). Both are described by an equation of the form

Isyn = gs(vpre)(V − Es), (10)

where s is an activation variable that depends on the voltage of
the presynaptic cell vpre, and Es is a constant. Since the simulated
network is of limited size, each cell receives a current Iapp that
mimics the exogenous excitatory background drive that would be
present in vivo. It is assumed that each pyramidal cell excites
some subset of interneurons, and each interneuron makes reciprocal
inhibitory synapses onto a subset of pyramidal cells (see Fig. 1 right
panel and Fig. 2b and 2c for the synaptic connectivity maps).
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Fig. 1. The 5-s snapshot of spike rasters of 14 cells and their synaptic
connectivity map. Cells #1-10 are pyramidal cells, and Cells #11-14 are
interneurons. Red/blue color at (i, j)-entry implies the presence of an
excitatory/inhibitory synaptic connection from Cell i to Cell j. Green color
denotes null connection.

Two networks were constructed as follows. The first network was
simulated at only a baseline state, while the second network was
simulated at both baseline and anesthesia states. To simulate the
anesthesia-like state we made parametric changes that are consistent
with the molecular targets of well-known drugs. For instance, the
general anesthetic drug propofol acts by potentiating the GABAA

synaptic current [2]. In our simulation, we accounted for this effect
by making a threefold increase in the synaptic conductance g in the
decay dynamics of s(vpre) in equation (10) [7], [11].

Setup-1: The first simulation is a small network of 14 cells,
with 10 pyramidal neurons (i.e., regular-spiking, or RS cells) and 4
interneurons (i.e., fast-spiking, or FS cells). The simulation length
is 2 minutes, with sampling rate 1 kHz. The mean±SD firing rates
of the pyramidal neurons and interneurons are 3.86±0.18 Hz and
20.31±0.41 Hz, respectively. The spike rasters and the synaptic
connectivity map are shown in Fig. 1.

Setup-2: The second simulation is a medium network of 200
cells (180 RS cells and 20 FS cells). In order to imitate a realistic
recording condition where only a small portion of population
neurons can be accessed, we randomly selected 25 cells (i.e., 1/8 of
the population) that consist of 20 RS cells and 5 FS cells. A total of
5-min data were generated, with sampling rate 1 kHz. Specifically,
the averaged firing rates during baseline (anesthesia) are 3.3 (2.1)
Hz and 15.5 (3.9) Hz for the RS and FS cells, respectively.
Summary of neurons’ firing rates and synaptic connectivity maps
from two states are shown in Fig. 2.

In modeling the spike train data in these simulation studies, the
spikes were binned with 1-ms resolution. We selected six firing
history temporal windows that consist of the spike counts in the
past 1-3, 4-8, 9-15, 16-25, 26-40, 41-60 ms. As a general rule, we
set the hyperprior parameters to a0 = 10−3, b0 = 10−3 for FS
cells, and a0 = 10−2, b0 = 10−4 for RS cells. Because neuronal
spiking activity was assumed to be conditionally independent,
individual neurons were fit with separate PPGLMs, followed by a
KS test. To create a functional map of inferred neuronal interactions,
two cells are said to be interacting if there is a nonzero (in the
statistically significant sense) spiking dependent coefficient (at any
time lag) between a trigger cell and the target cell. To determine the
“functional” connection being excitatory or inhibitory, we counted
the majority of the nonzero coefficients at all six time lags—if the
majority of the coefficients are greater than 0, or there are more
positive connections than negative connections, then the trigger cell
is concluded to have an excitatory connection to the the target cell.
A similar rule holds for the inhibitory connection.

In the experiment setup-1, The estimation accuracy of the inferred
connection map is 94.9%. Checking the estimation errors showed
that most errors were induced by FP: a few weak connections
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Fig. 2. The average firing rates of selected 25 cells (a) and the synaptic
connectivity maps that were used to generate spike trains during baseline
(b) and general anesthesia (c). Cells #1-20 are pyramidal cells, and Cells
#21-25 are interneurons. Anesthesia-1 and Anesthesia-2 are two simulated
conditions with the same network connectivity but different firing rates.

TABLE I
SUMMARY OF SETUP-2 RESULTS BASED ON 5-MIN SIMULATED DATA.

Condition Ave. firing rate (RS/FS) Error rate
Baseline 3.3/15.5 Hz 12.5% (75/600)

Anesthesia-1 2.1/3.9 Hz 18.9% (113/600)
Anesthesia-2 1.6/3.1 Hz 23.3% (140/600)

between some pyramidal cell pairs were mistakenly identified.
In the experiment setup-2, we first investigated the baseline

condition. We have tested the impact of the data length to the
estimation accuracy. Using 1-min, 2-min, and 5-min recordings,
it was found that the mis-identification (FP+FN) error rates were
16.5% (99/600), 14.7% (88/600), 12.5% (75/600), respectively (the
cell self-interactions were excluded). Hence, increasing the length
of the recordings improved the estimation accuracy, but there was
still a fundamental bottleneck because of the overall sparsity of
the spiking data and the limit of the statistical model. It was also
found that most of (either FP or FN) errors occurred in the RS→FS
connections. By examining the results, we suspected that it was
probably due to the imbalance of the firing rates between the RS
and FS cells, since a low-spiking RS cell would likely be mistakenly
estimated with an inhibitory effect on the FS cell (which causes FP).
The FN error might be either because of the lack of sufficient spik-
ing data, or because of the insufficient detectability of the model (in
terms of the window size and length) or the inaccurate assumption
of statistical model. Next, the simulated anesthesia-like condition
are investigated. Using the full 5-min recordings (Anesthesia-1),
the obtained mis-identification error rate was 18.9% (113/600).
Therefore, the reduction of ensemble firing rates increased the
sparsity level of the spiking data and consequently caused an
increase of the FP/FN error (even the KS plot still falls within
the 95% CIs). To further investigate the impact of the firing rate on
the estimation accuracy, we fixed the network connectivity and data
length, and further reduced the cell firing rates (∼20% reduction
at the population level; Anesthesia-2). In this case, we observed an
increased mis-identification error rate (23.3%, 140/600). See Table
I for a summary of the results.

B. Experimental Data

The spike train data were recorded from the barrel cortices
of two rats during active behavior (maze running) and during
the administration of isoflurane anesthesia. Experimental protocol
details are referred to [16]. Recordings from two rats at two days
were used here, each with about 25-30 min recording time during
run or anesthesia. For consistency, we used 20-min recordings for
each rat for both run and induction of anesthesia (excluding the first
5 min data) conditions. The depth of anesthesia was assessed by

4177



TABLE II
SUMMARY STATISTICS OF REAL SPIKE TRAIN DATA.

Median of ave. firing rate (Hz) of all cells
# cells (RS/FS) maze running isoflurane anesthesia

Rat 1 13 (13/0) 2.68 0.49
Rat 2 8 (7/1) 5.40 2.27
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Fig. 3. Snapshots of 1-min raster plots of 13 RS cells recorded from barrel
cortex (Rat 1) during maze running (left) and induction of anesthesia (right).

breathing rate and the hindpaw withdrawal reflex. When the depth
of anesthesia was reached, the delivery of isoflurane was stopped.
The same cells were tracked through the active behavior and
anesthesia. Classification of cell types (RS vs. FS) were determined
by the firing rate and the peak-to-trough width [16]. Snapshots of
spike train recordings from one rat are shown in Fig. 3. Summary
statistics of the experimental data are shown in Table II.

The spike trains were binned with 2-ms resolution. Considering
the large variability of firing rates and inter-spike intervals (ISIs)
across all neurons, to account for low firing rates we used five
firing history windows that consist of the spike counts in the past 1-
100, 101-200, 201-500, 501-1000 ms. No extra sensory or behavior
covariate was used for fitting the spike train data during active
behavior or induction of anesthesia. The hyperprior parameters
a0 = 10−3, b0 = 10−4 are chosen for PPGLM fitting (but the
results are insensitive to these hyperprior values). Due to imbalance
of firing rates and high irregularity of ISIs, none of PPGLM fit
fell within the 95% CIs of the KS plots. This might also be
due to the insufficiency of the covariates used in our PPGLM,
given the potentially non-stationary nature of the spike dynamics
(e.g., large chunks of burst suppression periods) within the 20-min
timescale. Based on the similar methodology in simulations, we
inferred the functional connectivity of the cell assemblies. Results
are shown in Fig. 4. As seen, the neuronal interactions (mostly RS-
RS connections) among cell assemblies reduced from the active
behavior to the induction of anesthesia. Specifically in Rat 2, the
dominant inhibitory effect of one FS cell (#6 in Fig. 4c) was
suppressed by the isoflurane, which further induced some excitatory
or inhibitory interactions among other cells (Fig. 4d). Note that
based on our experimental data, the inferred functional connectivity
of neuronal ensembles during active behavior was rather low in both
animals (Fig. 4a,c). This might be due to the fact that many recorded
neurons were indeed physically far apart (resulting in a decreasing
chance of connectivity) because of the placement of electrodes at
different layers of the barrel cortex.

IV. DISCUSSION AND FUTURE WORK

In this paper, we have used a PPGLM to assess the neuronal
interactions of cell assemblies during baseline and anesthesia. By
first testing on the synthetic data generated by biophysical neuronal
models, our statistical model shows reasonably good estimation
results on the neuronal interactions among cell assemblies. In the
simulation study, it is observed that the reduction of neuronal firing
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Fig. 4. Inferred functional connectivity maps for two rats during active
behavior (a,c) and induction of anesthesia (b,d).

rates pose a challenge in accurately estimating the network func-
tional connectivity. Therefore, improving the detection accuracy and
robustness in the presence of sparse spiking data requires more
research effort in future investigation. In the real data analysis, it is
observed that the interactions of RS-RS and FS-RS cells decreased
after the induction of isoflurane anesthesia. As a future goal, we will
apply the methods developed here to more experimental spike train
data recorded from animals under different anesthetic drugs. Our
approach suggests a way to characterize the effects of anesthestic
drugs on single neurons and neuronal ensembles.
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