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Abstract— Recurrently connected neural networks have been
used extensively in the literature to describe various neuro-
physiological phenomena, such as coordinate transformations
during sensorimotor integration. Due to the directed cycles that
can exist in recurrent networks, there is no well-known way
to a priori specify synaptic weights to elicit neuron spiking
responses to stimuli based on available neurophysiology. Using
a common mean field assumption in which synaptic inputs are
uncorrelated for sufficiently large populations of neurons, we
show that the connection topology and a neuron’s response
characteristics can be decoupled. This allows specification of
neuron steady-state responses independent of the connection
topology. We provide evidence from two case studies which
serve to validate this synaptic weighting approach.

I. INTRODUCTION

Spiking models typically simulate the responses of small

groups of connected neurons at sub-millisecond to millisec-

ond resolution. In contrast, many rate-based models estimate

neuron firing rates over tens to hundreds of milliseconds.

The reduction in temporal resolution when moving from

spike to rate-based models is attractive due to decreased

computational demands. The interpretation of continuous

signals associated with neuron firing rates as opposed to the

highly discretized signals associated with spiking responses

has facilitated their use in modeling the visual system [1],

sensorimotor integration [2], [3], and the vestibular system,

particularly with regard to the encoding of head position [4],

among others. Such models implicitly assume that the timing

of individual spikes does not significantly impact the repre-

sentation of information in the brain. However, recent studies

have shown that the occurrence (or absence) of individual

spikes in a neuronal network can impact neuron steady-state

responses [5]. Rate-based models also incur quantization

error which may affect population dynamics and decoding

accuracy at the system output as a result of firing rate

estimation [6].

In spiking and rate-based modeling approaches, connec-

tion topologies are intimately coupled with the steady-state

neuron response properties drawn from neurophysiology.

These neuron steady-state responses, such as a neuron’s

background rate or response to its preferred stimulus, are

particularly difficult to guarantee if the connection pro-

file features directed cycles. There is no well-known way
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to a priori specify connection weights to achieve desired

neuron response properties; instead, weighting profiles are

either manually tuned or learned until neuron steady-states

align with available measures from neurophysiology studies.

Connection profiles which use manually tuned or learned

weights are difficult to generalize to novel stimuli, since

the network dynamics may violate the initial neuron steady-

state assumptions. For instance, the weighting structure of a

neural network can be learned to evoke assigned maximum

responses for a particular preferred stimulus. However, ap-

plication of a non-preferred stimulus may result in network

instability due to the topology of the learned connection

profile..

We propose a spike-based modeling framework which

specifies model parameters in terms of neuron steady-states,

drawn from neurophysiology literature. Here, the technique

used to achieve neuron steady-states is largely independent

of the chosen connection topology.

II. METHODS

A neuron may receive input from a number of locations:

sensory input directly (as in the case of sensory neurons),

bottom-up projections from neurons at earlier stages of

cortical processing, lateral connections from within a cortical

area, or top-down synaptic connections from later stages of

cortical processing. Together, these inputs define a mapping

between a neuron’s rate response and the presented stimuli,

S, which can be defined across multiple dimensions. We

define this overall mapping as the neuron response profile,

which is measured experimentally by many neurophysiology

studies. In contrast, a stimulus response profile, F(t;S),
relates neural and/or sensory inputs from neurons which are

not explicitly incorporated into the model via an equivalent

input current. The presentation of a stimulus results in a

change of the membrane driving current of a neuron,

Jd(t;S) = F(t;S), (1)

whose amplitude is defined by the stimulus response profile.

A. Specifying Synaptic Weights

Spiking activity of connected neurons introduces addi-

tional contributions to a neuron’s input current, such that

J(t) = Jd(t;S)+ Jspike(t;S)+ Jnoise(t), (2)

where J(t) is the membrane current, Jspike(t;S) is the current

input due to connected neurons, and Jnoise(t) reflects stimulus

non-specific input currents that contribute to the neuron’s

background response. Representing neuron spiking at time
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n as a Dirac delta function, the j-th neuron’s input due to

spiking of the i-th neuron can be written as

J
spike
j (t) = ∑

i
∑
n

δ (t − tin)∗wi jh j(t −T
delay

i j ), (3)

where wi j is the synaptic weight from the i-th to the j-

th neuron, h j is a post-synaptic current filter, and T
delay

i j

represents the synaptic transmission delay associated with the

synapse. Synaptic weight may be structured (e.g. a difference

of Gaussians curve) or unstructured via the output of a

pseudorandom number generator.

We define the i-th neuron’s mean firing rate to a steady-

state input, ri, over time T as

ri = lim
T→∞

1

T

∫ T

0
δ (t − tin)dt. (4)

Considering two neurons, i and j, within a population,

the steady state input at j due the firing of i is directly

proportional to the i-th neuron’s time-varying firing rate,

ri(t;S). Therefore, the input at j is given by

J
spike
j = lim

T→∞

1

T

∫ T

0
wi jri(t;S)h j(t)dt. (5)

This reduces to J
spike
j = wi jri(S), provided the area of the

post-synaptic current filter is normalized to one and the

stimulus is approximately constant over the filter length.

1) Neuron Background Responses: Many models incorpo-

rate an estimate of a neuron’s background response, corre-

sponding to the nominal activity of the neuron, independent

of the presented stimuli. It is typically assumed that this

activity is due to synaptic input which is not accounted for

directly by other modeled neurons. Background noise can be

incorporated by a nonzero value of Jnoise in (2).

When the network is not presented with a stimulus, the

driving input, Jd , is, by definition 0. However, synaptic

connections still exist within the network, providing input via

Jspike. Therefore, when neurons in the network are firing at

their background rates, we must ensure that the Jspike(t)≈ 0

(i.e. the only contribution to the overall membrane current is

due to Jnoise). The mean spiking input from all other neurons

firing at background is given by

b
spike
j = ∑

i

wi jri(0), (6)

where 0 represents a lack of a stimulus and ri(0) corre-

sponds to the rate response due only to Jnoise. We use this

background input to define a constant offset in the weight

profile, wo f f set = b
spike
j /(r̄i(0)N), where N is the number of

incident synapses and r̄i(0) is the mean background firing

rate of all connected neurons. This offset effectively balances

the network’s excitation and inhibition at background. The

modified weight, wnew
i j , is given by wnew

i j = wi j −w
o f f set
j .

2) Neuron Maximum Responses: For convenience, we

constrain Jd + Jspike ≤ 1. Given this constraint, Jd(Spref)+
Jspike(Spref) ≈ 1, when a neuron is presented with its pre-

ferred stimulus, Spref. The magnitude of the incident synaptic

weights can then be scaled by evaluating the response of the

i-th neuron at the j-th neuron’s preferred stimulus:

wscaled
i j = wnew

i j

1− Jd
j (S

pref
j )

∑i wnew
i j ri(S

pref
j )

. (7)

3) Neuron Response Profiles: In practice, it may difficult

to evaluate ri(S
pref
j ), particularly in a recurrent network

where the i-th and j-th neurons may be bidirectionally

connected. However, provided the modeled neural network

is sufficiently large (thousands of neurons), the contribution

of the i-th neuron’s response to itself through its interaction

with j is small (i.e. wi jw ji ≈ 0). Computationally, this is

equivalent to a common assumption of mean field models:

for a neural population that is sufficiently large, incident

synaptic activity is not correlated [7]. This dramatically

simplifies the evaluation of ri(S), for arbitrary stimuli.

The neuron response profile can then be determined ex-

plicitly given the neuron stimulus response and the connec-

tion topology among neurons, since the inputs are decoupled.

This allows the specification of spiking neuron responses

in terms of the familiar rate-based neuron response curves

typically reported in neurophysiology studies,

r j(S) = α j

(

Fj(S)+∑
i

wi jri(S)

)

, (8)

where α relates the input of the neuron when presented with

its preferred stimulus to its maximum response. The synaptic

weights can be computed offline and then be used to obtain

response profiles specified a priori for each neuron.

III. RESULTS

We provide examples from two case studies which illus-

trate how the modeling framework can be used to derive

synaptic weights in order to elicit physiological responses in

recurrent spiking neural networks. We used leaky integrate-

and-fire (LIF) neurons as a convenient encoding model that

provides sufficient biological plausibility while maintain-

ing computational tractability for large populations. Other

spiking models (e.g. Hodgkin-Huxley or Izhikevich) can be

readily used and would provide similar results.

The membrane voltage of each LIF neuron, Vj(t), was

found in response to an input current, J j(t), by integrating

dVj(t)

dt
=

1

C j

(

J j(t)−
Vj(t)

R j

)

, (9)

where R j and C j represent the membrane resistance and

capacitance, respectively. The RC time constant for each

neuron, τRC
j = R jC j, was chosen randomly from a uniform

distribution ranging from 10 to 30 ms. A spike was generated

when Vj(t) > 1, after which the neuron entered an absolute

refractory period with a duration of 2-5 ms across neurons.

Initial membrane voltages were assigned randomly from 0

to 1.
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Fig. 1. Neuron and population responses in a single layer recurrent spiking network. (a) Mean rate responses across the population for one thousand
randomly chosen neurons during presentation of a stimulus at π radians. Neuron rate responses are normalized to their respective maximum responses.
(b) Instantaneous firing rates, defined as the reciprocal of the inter-spike interval, plotted against time for a neuron which prefers a stimulus located at π

radians. The stimulus was supplied from 1 to 2 seconds.

A. Single Layer Model

The first model consisted of a single population of one

hundred thousand neurons featuring recurrent connections.

Each neuron was assigned a Gaussian stimulus response

profile,

Fj(t;S) = exp

[

−(S−S
pre f
j )2

2σ2
j

]

, (10)

where S
pre f
j was the neuron’s preferred stimulus and σ j was

the standard deviation of the response profile in the stimulus

space. Preferred stimuli were uniformly distributed within the

[0, 2π] polar space. Standard deviations were randomized

across the population and uniformly distributed between

[π/8, π/4] radians. Neurons’ maximum response to their

preferred stimuli were chosen from a uniform distribution

between 40 and 80 spikes/second. The bias current, Jnoise,

was selected to produce a background firing rate that was

10% of the neuron’s maximum response.

Recurrent connections among neurons were characterized

by a Gaussian profile whose standard deviation was matched

to the neuron’s stimulus response profile, σ j. Each neu-

ron featured ten thousand pseudorandomly selected efferent

synapses. The synaptic weights were offset and scaled using

the framework presented in Section II-A.

Fig. 1 shows the results of a three second simulation.

During the first second, no stimulus was supplied, allowing

all neurons to spike at their background rates. A stimulus

located at π radians was then supplied to the population for

one second. The neuron shown in Fig. 1 was assigned a

preferred direction close to the presented stimulus, Spre f ≈ π ,

and thus has a response near the assigned maximum. When

the input stimulus was removed during the final second,

neuron responses returned to baseline levels within 20 ms.

Responses across the population show a Gaussian profile;

neurons which prefer a stimulus as approximately π radians

feature spike rates near their maximum response.

B. Cue Integration Model

In a second series of simulations, we used the modeling

framework to characterize the temporal dynamics of cue

integration. Using as a basis the rate-based model of cue

integration proposed by Pouget and colleagues [3], [8], we

modeled the transformation of an object coded in eye-

centered (retinotopic) coordinates, xr, into head-centered

coordinates, xh. Provided the position of the eye within the

orbit, xe, is known, the head-center coordinates of the object

can be found by xh = xr + xe.

Three neural populations, each consisting of five thousand

neurons, were used to encode head, eye, and retinotopic

position of an object. Bidirectional connections between

these populations and an integration layer of twenty thousand

neurons followed difference of Gaussian profiles,

wein = Ke

−(S
pre f
ei

−S
pre f
en )2

2σ2
n − e

−(S
pre f
ei

−S
pre f
en )2

4.5σ2
n

wr jn = Ke

−(S
pre f
r j

−S
pre f
rn )2

2σ2
n − e

−(S
pre f
r j

−S
pre f
rn )2

4.5σ2
n

whkn = Ke

−(S
pre f
hk

−S
pre f
en −S

pre f
rn )2

2σ2
n − e

−(S
pre f
hk

−S
pre f
en −S

pre f
rn )2

4.5σ2
n ,(11)

where S
pre f
ei , S

pre f
r j , and S

pre f

hk correspond to the preferred

eye, retinotopic, and head position of the i-th, j-th, and k-

th neurons in the respective populations, wein indicates the

synaptic weight from the i-th neuron in the eye position

layer to the n-th neuron in the intermediate layer, and σ is

the standard deviation of the connection topology associated

with the destination population. Similarly, wr jn denotes the

connection for the j-th retinotopic layer neuron to the n-

th intermediate layer neuron. Connection weights from the

head-centered layer, whkn, are preferentially connected to

neurons in the intermediate layer with preferred stimuli

S
pre f
e +S

pre f
r .

To facilitate comparisons with the rate based model [3],

each neuron was assigned a maximum response of 80

spikes/sec. We note, however, that the modeling framework

does not required uniform maximum responses, as demon-

strated by the first case study. Standard deviations in the

stimulus response profile were uniformly distributed from

[π/16, π/8] radians across neurons. Coupled with randomly

initialized membrane voltages as well as bias currents, this

resulted in an initial noise that was greater than provided

in [3] (Fig 2). All other neuron properties, were assigned as

in the first case study.
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Fig. 2. Neuron attractor state responses for a recurrently connected spiking network performing cue integration. The basic network structure has been
described previously in [3]. A driving input (10) supplied a neuron with at most 20% of its total current at the preferred stimulus. The remaining 80% of
the input at Spre f was supplied by recurrent connections. The network was initialized with noisy rate responses due to randomized initial voltages and a
bias current, Jnoise. Neural responses stabilized to smooth hills of activity in less than 50 milliseconds.

Neuron responses were simulated for one second, during

which the driving input, Jd , supplied by Gaussian stimulus

response profiles, provided a clamped input of at most 20%

when a neuron was supplied with its preferred stimulus. The

remaining 80% of input at a neuron’s preferred stimulus

was supplied by lateral connections. This ratio of inputs

is consistent with those presented in auxiliary simulations

from [3] as well as cortical anatomy [9].

Fig. 2 shows the mean firing rates for each of the neural

populations when inputs to the eye-centered and eye position

populations were -20◦ and 20◦. The network was successfully

able to perform cue integration, resulting in smooth hills of

activity that stabilized within 50 ms.

There are two primary differences between the model sup-

plied in [3] and the model implemented here: first, we used

spiking neurons as opposed to rate-based basis function units.

Second, the activity in the neural network described by [3]

was initialized using a noisy probability density function and

then allowed to relax over three iterations. These iterations

cannot be directly linked to an absolute timescale; the spike-

based model explicitly incorporates time, allowing future

characterization of the temporal dynamics associated with

cue integration tasks.

IV. DISCUSSION

Using numerical simulations, we have developed a frame-

work to specify connection weights in arbitrarily connected

recurrent spiking networks, based on physiologically defined

response characteristics. In particular, the background and

stimulus-specific maximum responses of a neuron can be

guaranteed when incident synaptic inputs are uncorrelated.

This technique decouples the steady-state neuron responses

from the connection topology, allowing a priori scaling of

weights to elicit physiologic responses.

The primary assumption which allows us to dissociate

neuron stimulus response profiles from the connection topol-

ogy is that the neural population is sufficiently large to

decouple incoming synaptic inputs. As the number of efferent

connections per neuron, N, increases the contributions of

secondary recurrent loops decreases quickly (i.e. wi jw jk → 0,

for arbitrary i, j, and k). We have found that population sizes

on the order of thousands of neurons with several thousand

efferent connections per neuron provides sufficiently small

weights to support this assumption.

Most mean-field models of aggregate neural population ac-

tivity assume that synaptic inputs are not correlated [7]. Our

approach validates this assumption in steady-state conditions

for suitably large populations. More importantly, if facilitates

the use of spike-based neural network models to characterize

the dynamics of neural processing within populations. For

example, investigation of the temporal dynamics associated

with the onset of stimulus presentation or the effects of stim-

ulus history on population attractor states can be examined

in an absolute timescale using the presented framework.
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