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Abstract—In this paper, a new method for automatic ocular 

artifacts (OA) removal in EEG recordings is proposed based on 

wavelet-enhanced canonical correlation analysis (wCCA). 

Compared to three popular ocular artifacts removal methods, 

wCCA owns two advantages. First, there is no need to identify 

the artifact components by subjective visual inspection, because 

the first canonical components found by CCA for each dataset, 

also the most common component between the left and right 

hemisphere, are definitely related to artifacts. Second, 

quantitative evaluation of the corrected EEG signals 

demonstrates that wCCA removed the most ocular artifacts with 

minimal cerebral information loss. 

I. INTRODUCTION 

lectroencephalograph (EEG) recordings are frequently 

contaminated by ocular artifacts (eye movements and eye 

blinks), muscle noise, heartbeat and line noise, due to the 

limitation of EEG signal recording technique. These artifacts, 

especially the ocular artifacts (OA), often complicate the 

interpretation of the EEG recordings. Electrooculography 

(EOG) artifacts can generally be of orders of magnitude 

greater than the brain-generated electrical potentials. EOG has 

a spectral overlap with the underlying EEG and cannot be 

removed using conventional filtering. Besides, OA is most 

prominent over the anterior head regions [1]. 

Blind source separation (BSS) is a widely explored 

approach for correcting the ocular artifacts, which finds the 

effect of the artifact signals onto each electrode, and then 

subtracts the artifacts based on the weights from those 

electrodes. There are mainly two problems for BSS based 

methods. First, ocular sources extracted by independent 

component analysis (ICA) always contain some cerebral 

activities especially in anterior electrodes, while it did not 

happen with second order blind identification (SOBI) [2]. To 

overcome this problem, several studies have combined ICA 

and wavelet de-noising to remove ocular artifacts from EEG 

signals [3-4]. Besides, comparative studies have shown that 

SOBI performs better than ICA for removing the EOG artifact 
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[5]. The second problem is the subjectivity of identifying the 

ocular artifact component by time-consuming visual 

inspection. To overcome that problem, some studies have 

attempted to find some rules using statistical properties such 

as kurtosis or entropy [6-7]. However, the performance of the 

combination methods mentioned above to remove the ocular 

artifacts is not satisfying and still needs improvement. 

In this paper, a new method for ocular artifact removal in 

EEG recordings is presented: wavelet enhanced canonical 

correlation analysis (wCCA). First, the CCA is applied to the 

mixed signal in a new way according to the differences of the 

spatial distribution between the EEG signals and the EOG 

signals. There is no need to identify the artifact component by 

subjective visual inspection, because the first canonical 

components found by CCA for each dataset, also the most 

common component between the left and right hemisphere, 

are definitely related to artifacts. Then wavelet thresholding is 

employed to recover the cerebral activities leaked into this 

artifact component. The performance of the proposed method 

is tested on semi-simulated data, and compared to three 

popular OA removal methods (CCA, SOBI and wavelet-ICA) 

in terms of correlation coefficient and signal-to-artifact ratio 

(SAR). Furthermore, the method is illustrated on a real 

spontaneous EEG recording contaminated by obvious ocular 

artifacts for visual inspection. 

II. METHODS 

A. DWT Method 

The multi-resolution DWT (discrete wavelet transform) 

and IDWT (inversse discrete wavelet transform) can be 

implemented by cascades of several two-channel analysis and 

synthesis filterbanks, respectively. Through the lowpass filter 

an approximation signal is extracted, whereas by the highpass 

filter a detail signal is taken out. 

B. Common CCA Method 

In most BSS-CCA cases, let ( )tX be the observed data 

matrix with K mixtures and N samples, and let ( )tY be a 

temporally delayed version of the original data 

matrix ( ) ( 1)t t Y X . When the mean of each row from the 

data matrices ( )tX and ( )tY is removed, consider the linear 

combinations of the components in X and Y , called the 

canonical variates 
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maximally correlated with each other, which can also be seen 

as the most common components existing in ( )tX and ( )tY . 

By putting the obtained components equal to the sources, 

BSS-CCA finds sources which are uncorrelated with each 

other, maximally autocorrelated and ordered by decreasing 

autocorrelation index
i  [8]. When BSS-CCA is applied to 

the EEG, then the sources, or components, contributing to the 

EEG and the EOG are derived respectively, and the cleaned 

EEG data can be got by setting the component representing 

the ocular artifact source equal to zero. This is exactly the idea 

of the CCA-based ocular artifact removal method. However, it 

is inevitable that there are some commonly-existing cerebral 

activities leaked into the artifact component, and cancelling it 

will cause relevant cerebral information loss. Besides, without 

reasonable explanation of the physiology characteristic of the 

first canonical components found by CCA, it still needs visual 

inspection for artifact component identification. 

C. wCCA Method 

Typically, EEG observations are obtained from the output 

of a multitude of scalp electrodes, where each sensor receives 

a different combination of the EOG sources and EEG sources. 

It is known that the EEG sources from different sites can be 

quite different. The sensorimotor rhythms originating from 

very localized areas in the cortex is just an example: the left 

and right hemisphere have quite different kind of waves (event 

related synchromization (ERS)/desynchronization (ERD)). 

On the other hand, the EOG amplitude is attenuated 

approximately with the square of the distance, with similar 

kind of waves across the cortex. Inspired by the differences of 

spatial distribution, a new version of BSS-CCA application is 

tried: let ( )tX be the EEG recordings of the left hemisphere, 

and ( )tY be the EEG recordings of the right hemisphere. 

Besides, the vertical EOG signal is added to the end of both 

( )tX and ( )tY , in order to enhance the ocular artifacts’ 

percentage in the first found canonical components. As we 

have described above, the first canonical components 

constructed by the CCA between the two sets of variables, are 

maximally correlated with each other, which is exactly the 

most common component between ( )tX and ( )tY . Obviously, 

combined with the physiology characteristic of the EEG and 

EOG signals, the ocular artifacts must be captured in the first 

canonical components, as well as some commonly-existing 

cerebral signals. Through this kind of BSS-CCA, we skillfully 

avoid the selection of artifact component manually, which 

poses quite a problem in most components based methods. 

There are inevitably some brain activities in this component 

for each dataset, and canceling it causes cerebral information 

loss. Thus the wavelet decomposition procedure is introduced 

as a thresholding: all wavelet coefficients above a certain 

threshold are set to zero, and then the resulting structure is 

used for the inverse wavelet transformation. The signal for 

each decomposition level is compared with their 

corresponding thresholds to find the artifacts. The wavelet 

function used in the current study is db4, which has been 

frequently used in many EEG studies. Here the simplest fixed 

form threshold [3-5] is used:  

2log( )
i i i

K N                             (2) 

where iN is the number of samples in the level i , ( )
i

D t is 

the detail signal of level i , median( ( )) / 0.6745
i i

D t  , 

and median( )A means the median value of A . For the 

highest level of analyzing signal, ( )
i

D t is replaced by the 

approximation signal of that level ( ( )
i

A t ) in the computation 

for
i

 . The main steps of wCCA-based ocular artifacts 

removal method are described as follows: 

1) The canonical components for each dataset are obtained 

through CCA decomposition to the raw EEG signals. 

2) The first found canonical components extracted by CCA, 

which are definitely the ones related to ocular artifacts for 

each set respectively, are transformed through DWT. 

3) The wavelet coefficients for each level are compared 

with their corresponding thresholds, and all the wavelet 

coefficients above a certain threshold are set to zero. 

4) The corrected artifact components are obtained through 

the wavelet reconstruction, using the nonselected details and 

the cleaned details. 

5) The wCCA-corrected EEG signals are obtained through 

CCA reconstruction. 

III. RESULTS 

A. Simulation Data 

The spontaneous EEG signals are recorded through a 

32-channel electrocap, sampled at 250Hz. Vertical and 

horizontal EOG (VEOG and HEOG) signals are recorded 

through 4 electrodes around the eyes. After a careful 

inspection of no obvious artifacts, a 4s consecutive epoch 

obtained from 8 EEG channels according to the international 

10/20 system (FP1, FP2, F3, F4, C3, C4, O1 and O2) are 

assigned as EEG sources. Another 4s epoch from the same 

subject with only obvious ocular artifacts is assigned as EOG 

sources for simulation. The ocular contamination is simulated 

by means of the addition of VEOG and HEOG sources 

(weighted by their corresponding propagation factors) to the 

EEG sources [9], composing the semi-simulated data. TABLE 

I shows the weights used in this paper. We took five equally 
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different weight pairs accordingly to simulate different signal. 
Table I 

VEOG and HEOG Propagation Factors used to Simulate Data  

Channel VEOG HEOG 

Fp1 0.969  0.075 0.029 0.046 

Fp2 0.983  0.083 -0.063 0.041 

F3 0.495  0.101 0.085 0.027 

F4 0.463  0.107 -0.013 0.026 

C3 0.223  0.069 0.073 0.025 

C4 0.202  0.081 -0.073 0.023 

O1 0.027  0.029 0.009 0.023 

O2 0.027  0.029 -0.007 0.021 

B. Validation of Correction 

Among so many criteria to test the validation of OA 

removal methods [9-10], two goals are summarized: (1) 

testing the degree of the removal of the ocular artifacts; (2) 

testing the quality of recovering of the brain signals. 

Combining the two goals, the proposed method can be 

evaluated effectively and objectively. The semi-simulated 

data are used so that we can estimate the recovering quality in 

time domain. In this paper, similarities of waveforms between 

the EEG sources and the corrected EEG data are evaluated by 

calculating the correlation coefficients between them. Besides, 

in order to quantify the degree of the removal of the ocular 

artifacts, the differences between the corrected EEG signals 

and the mixed EEG signals are originally measured through 

signal-to-artifact ratio (SAR) defined as follows: 
2

corrected

2

mixed corrected

mean(EEG )
SAR 10 log

mean(EEG EEG )
 



             (3) 

The proposed method is compared with three existing OA 

removal methods: CCA, ICA and wavelet-enhanced ICA [5].  

Fig.1 shows the mixed EEG signals, the EEG sources and 

the corrected EEG signals after applying different OA 

removal techniques. Visual comparison of the proposed 

correction methods on two anterior channels Fp1 and F3 can 

be observed. We can see that, both wCCA and SOBI extract 

ocular artifacts with less loss of cerebral information than the 

other two methods. 

Table II shows the averaged correlation values between the 

sources and the corrected EEG signals, corresponding to three 

brain areas: anterior, central, and posterior. We caculated the 

correlation coessicients of five different signals.The highest 

correlations as a whole are obtained when the wCCA 

algorithm is applied, despite the neglectably inferior 

performance in posterior areas. Because it is known that 

ocular artifacts decrease rapidly with the distance from the 

eyes, and the most serve interference occurs in the frontal 

areas. So the task of removing ocular artifacts without altering 

the cerebral activities is more challenging and important for 

frontal channels than posterior ones, so the proposed method 

performs much better than the other methods as a whole. 

Table III shows the differences between the corrected EEG 

signals and the mixed EEG signals in terms of SAR (take the 

third weight pairs as an example). The highest SAR 

improvements are obtained after applying the wCCA 

algorithm, which means that wCCA removes far more artifacts 

than the other methods. And combining the results of the 

correlation coefficients criterion, the conclusion that 

wCCA-based method removes the most ocular artifacts from 

the mixed EEG data, and at the same time preserves the most 

neural signals can be made. 
Table II 

Correlation Coefficients for OA Removal Methods 

Area EOG removal methods 

non-correcte

d 

CCA SOBI wICA wCCA 

Anterior 0.411 

  

0.016 

0.847

  

0.022 

0.861

  

0.012 

0.685

  

0.011 

0.959

  

0.004 

Central 0.615 

  

0.074 

0.906

  

0.077 

0.922

  

0.055 

0.841

  

0.068 

0.975

  

0.006 

Posterior 0.986 

  

0.013 

0.985

  

0.011 

0.986

  

0.007 

0.990

  

0.002 

 

0.986 

All EEG 

Channels 

0.606 

  

0.013 

0.896

  

0.032 

0.907

  

0.021 

0.800

  

0.016 

 

0.970 

 

Table III 

Signal-to-artifact Ratio for OA Removal Methods 

Area EOG removal methods 

non-correcte

d 

CCA SOBI wICA wCCA 

Anterior -8.1475 5.2879 4.0281 2.1637 10.9728 

Central -4.2194 4.0991 8.2817 4.5175 12.7002 

Posterior 16.7085 16.6946 19.2960 17.3671 23.6340 

All -0.9515 7.8424 8.9085 6.5530 14.5699 

C. Real Data 

Fig. 2 shows an example of 3.5s-epoch EEG signals before 

and after applying the wCCA-based ocular artifact removal 

method. The effects of ocular removal method on different 

EEG leads are shown in Fig.2 (b). The leads chosen for Fig. 2 

are representative due to their distance to the eyes, 

corresponding to the left hemisphere. By visual inspection, 

this example demonstrates that wCCA algorithm removes 

efficiently the ocular artifacts from spontaneous real EEG data 

and preserving the neural signals. 

IV. CONCLUSION 

In this paper, a new method for automatic OA removal in 

EEG recordings based on wavelet-enhanced CCA (wCCA) is 

presented. Making full use of the differences between the 

spatial distribution of EEG and EOG signals, wCCA applies 

the CCA to decompose the signals into canonical components 

and then applies wavelet de-noising for artifact removal on the 

artifact components for each dataset. The performance of 

wCCA method is evaluated on semi-simulated data, and 

outperforms three popular OA removal methods: CCA, ICA 

and wICA, removing the most ocular signal, with minimal 

cerebral information loss. Besides, the performance of the 

proposed method is illustrated on a real spontaneous EEG 

recording with obvious ocular artifacts. The ocular artifacts 

are successfully removed, with little EEG signal alterations. 
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Fig.1 Visual comparison of the results corresponding to the mixed, the source and the corrected EEG signals by different ocular artifacts removal methods. 

Only Two channels are plotted as examples: (a) Fp1 (b) F3 because these frontal channels are contaminated most severely. 

 

 
Fig. 2 An example of 3.5s-epoch EEG signals before and after applying the automatic wCCA-based ocular artifacts removal method (a) the raw EEG signals 

containing obvious ocular artifacts; (b) the corrected EEG signals. 
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