
  

  

Abstract—Decoding human motor tasks from single trial 
electroencephalography (EEG) signals can help scientists better 
understand cortical neurophysiology and may lead to brain 
computer interfaces (BCI) for motor augmentation. Spatial 
characteristics of EEG have been used to distinguish left from 
right hand motor imagery and motor action. We used 
independent component analysis (ICA) of EEG to distinguish 
right knee action from right ankle action. We recorded 264-
channel EEG while 5 subjects performed a variety of knee and 
ankle exercises. An adaptive mixture independent component 
analysis (ICA) algorithm generated two distinct mixture models 
from a merged set of EEG signals (including both knee and 
ankle actions) without prior knowledge of the underlying 
exercise. The ICA mixture models parsed EEG signals into 
maximally independent component (IC) processes representing 
electrocortical sources, muscle sources, and artifacts. We 
calculated a spatially fixed equivalent current dipole for each 
IC using an inverse modeling approach. The fit of the models to 
the single trial EEG signals distinguished knee exercises from 
ankle exercise with 90% accuracy. For 3 of 5 subjects, accuracy 
was 100%. Electrocortical current dipole locations revealed 
significant differences in the knee and ankle mixture models 
that were consistent with the somatotopy of the tasks. These 
data demonstrate that EEG mixture models can distinguish 
motor tasks that have different somatotopic arrangements, 
even within the same brain hemisphere.     

I. INTRODUCTION 
BRAIN COMPUTER INTERFACE (BCI) enables command 
of an electronic device by brain activity modulation [1]. 

Originally, BCIs were intended to facilitate communication 
for people with severe motor disabilities [2]. However, there 
is an emerging consensus that BCIs could also be beneficial 
for neurorehabilitation [3],[4]. One focus of our laboratory is 
electromechanical devices for gait rehabilitation. Therefore, 
we are interested in the notion that a BCI, which 
supplements impaired descending motor commands during 
gait training, could increase treatment efficacy [4]. 

A common technology used for non-invasive BCI is 
electroencephalography (EEG). However, these signals are 
often considered to be too prone to movement artifact and to 
have too poor spatial resolution (due to the distance between 
the sensors and the cortex) for effective use in electrical 

 
Manuscript received March 23, 2011. This work was supported in part 

by the Office of Naval Research (N000140811215), the Army Research 
Laboratory (W911NF-09-1-0139 & W911NF-10-2-0022), and an Air Force 
Office of Scientific Research National Defense Science and Engineering 
Graduate Fellowship (32 CFR 168a).  

J. T. Gwin is with the University of Michigan, Ann Arbor, MI, 48109, 
USA (ph: 734-936-3084; fax: 734-936-1925; e-mail: jgwin@ umich.edu).  

D. P. Ferris is with the Movement Science Department, School of 
Kinesiology, University of Michigan, Ann Arbor, MI, 48109 USA. 

neuroimaging and BCI applications. However, independent 
component analysis (ICA) can effectively parse underlying 
electrocortical sources from artifact contaminated EEG [5]-
[11] even during walking [12]-[14]. ICA may be an effective 
tool for EEG-based BCI [15],[16], even in dynamic 
environments where movement artifact is likely.  

When combined with an inverse modeling approach 
[8],[17],[18], ICA reveals the spatial distribution of 
electrocortical sources that collectively contribute to EEG 
signals on the scalp. Incorporating this spatial distribution 
with spectro-temporal properties of electrocortical sources 
can enhance BCI capabilities [15],[16],[19]-[22]. Spatial 
characteristics of EEG have been used to distinguish left 
from right hand motor imagery [19],[22],[23] and motor 
action [24],[25]. Here we use ICA of EEG to distinguish 
right knee action from right ankle action, a unique challenge 
given the close somatotopic arrangement of the knee and 
ankle within the primary motor cortex. 

II. METHODS 

A. Tasks 
Five healthy volunteers with no history of major lower-

limb injury and no known neurological or locomotor deficits 
completed this study (all subjects were males, age range 21–
31 years). Subjects were screened for right handedness. All 
subjects provided written informed consent prior to the 
experiment. All procedures were approved by the University 
of Michigan Internal Review Board and complied with the 
standards defined in the Declaration of Helsinki. 

Subjects sat on a bench while performing isometric 
(contraction without limb movement) and isotonic 
(contraction with limb movement, concentric followed by 
eccentric) contractions about the knee and ankle. Two sets of 
20 reps of each exercise were performed. Each contraction 
was performed over roughly 3 seconds. Timing queues were 
not provided, therefore exercise timing was approximate. 
Exercises were performed in flexion and extension; except 
for isotonic knee flexion, which could not be accommodated 
by the test apparatus. Isometric ankle exercises were 
performed at a neutral ankle angle and isometric knee 
exercises were performed at 45 degrees of flexion. 

B. Recording EEG 
We recorded EEG at 512 Hz using an ActiveTwo 

amplifier and a 264-channel active electrode array (BioSemi, 
Amsterdam, The Netherlands). We measured the location of 
the electrode head cap with respect to anatomic head 
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reference points, as well as the location of 8 electrodes that 
were external to the head cap, using a digitizer (Polhemus, 
Colchester, VT, USA). Before data collection, electrode gel 
was used to bring electrode impedance below 25 kΩ.  

After data collection, we applied a zero phase lag 1 Hz 
high-pass Butterworth filter to the EEG signals to remove 
drift. EEG signals exhibiting substantial noise throughout 
the collection were removed from the data in a manner 
similar to [12],[13]. Channels with std. dev. ≥1000 μV were 
removed. Next, any channel whose kurtosis was more than 3 
std. dev. from the mean was removed. Then, channels that 
were uncorrelated (r≤0.4) with nearby channels for more 
than 0.1% of the time-samples were removed. On average,  
197 channels were retained for analysis (range: 134–240; 
sd.: 43.9). The remaining channel signals were re-referenced 
to an average reference. All analysis was performed in 
MATLAB (The Mathworks, Natick, MA) using scripts 
based on EEGLAB, an open source MATLAB toolbox [8]. 

C. Independent Component Analysis 
For each subject, EEG signals from all movement 

conditions were merged into a continuous dataset. These 
data were submitted to an adaptive mixture ICA algorithm 
[AMICA] [26],[27] that generalizes infomax [28],[29] and 
multiple mixture [30],[31] ICA approaches. We allowed 
AMICA to identify two distinct mixture models. Each 
mixture model linearly transformed the EEG channel signals 
into a set of maximally independent component (IC) 
processes. AMICA had no prior knowledge of the 
underlying exercises (i.e., timeframes of the merged dataset 
were not differentiated by exercise type). We computed the 
log-likelihoods for each model at each time-point. Log-
likelihood is a measure of the goodness-of-fit of the model 
to the recorded EEG. The average log-likelihood was used to 
identify the mixture models that best fit the data collected 
during knee and ankle exercises; we therefore refer to the 
knee model and the ankle model, respectively. For all 
subjects, one of the two models best fit the data for knee 
exercises and the other model best fit the data for ankle 
exercises. Next, single trial data (i.e., one exercise repetition) 
were categorized as knee or ankle based on the fit of the 
respective ICA model to the data for that trial.   

DIPFIT functions within EEGLAB [18] computed an 
equivalent current dipole model that best explained the scalp 
topography of each IC using a boundary element head model 
based on the Montreal Neurological Institute (MNI) template 
(the average of 152 MRI scans from healthy subjects) and a 
non-linear optimization technique [33]. We excluded ICs if 
the projection of the equivalent current dipole to the scalp 
accounted for less than 85% of the scalp map variance, or if 
the topography, time-course, and spectra of the IC was 
reflective of eye movement or electromyographic artifact 
[6],[7]. The remaining ICs reflected electrocortical sources. 
These sources were clustered across subjects using 
EEGLAB routines that implemented k-means clustering on 
vectors jointly coding differences in equivalent dipole 
locations and the topography of the dipole projection to the 

scalp. Prior to clustering, scalp topography was reduced to 
10 principal dimensions using principal component analysis. 
To account for differences in the dimensions of the dipole 
locations compared to the scalp topography, dipole locations 
were given a weight of 3 and topography principle 
components were given a weight of 1 prior to clustering (as 
in [12],[13]). 

Clusters of electrocortical sources containing ICs from at 
least 4 of the 5 subjects were paired across mixture models 
by minimizing the Euclidian distance between cluster 
centroids, such that each cluster pair contained one cluster 
from the knee model and one cluster from the ankle model. 
For example a cluster pair might include a right motor cortex 
cluster from the ankle model and a right motor cortex cluster 
from the knee model.  

A multivariate analysis of variance tested for differences 
between the paired clusters (e.g., the right motor cortex 
cluster for the knee model was compared to the right motor 
cortex cluster for the ankle model). The inputs to the 
analysis of variance were the vectors representing the ICs in 
the multi-dimensional principle component space that was 
used for clustering.  

III. RESULTS 
The knee and ankle ICA mixture models parsed an 

average of 23.2 and 26.2 electrocortical sources from the 
EEG signals, respectively (Fig. 1). The number of 
electrocortical sources per subject was not significantly 
different between the two models (ANOVA, p = 0.67).  

 
For each exercise repetition (i.e., a single trial), the 

average log-likelihood for all time-points within the trial was 
computed for both ICA mixture models. Each repetition was 
categorized as knee or ankle based on the ICA model that 
best fit the data for the individual trial. On average, 90% of 
trials were correctly categorized. For Subjects 1, 3, and 4, 
100% accuracy was achieved. For Subject 2, 100% accuracy 
was achieved except for isotonic ankle exercises, which 
were categorized correctly 33% of the time. For Subject 5, 
all isometric repetitions were classified correctly and all 
isotonic repetitions were classified incorrectly (Fig. 2). 

Clusters of electrocortical sources containing ICs from at 
least 4 of 5 subjects were localized to the anterior cingulate, 
posterior cingulate, visual, medial left motor, lateral left 

Fig. 1.  Number of electrocortical sources for each subject and 
independent component analysis model. The average sources per 
subject was not significantly different by model (p = 0.67). 
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motor, and lateral right motor cortices. All of these clusters 
were present in both the knee and ankle ICA models (Fig. 3). 

Electrocortical sources were clustered in a 13-dimensional 
principle component space (3 dimensions represented dipole 
location and 10 dimensions represented the topography of 
the dipole projection to the scalp). A multivariate analysis of 
variance, using these 13 principle dimensions as input, found 
the left medial motor, left lateral motor, visual, and posterior 
parietal cortex clusters to be significantly different between 
the knee and ankle ICA models (α = 0.05). The anterior 
cingulate and right motor cortex clusters were not 
significantly different across ICA models.  

 

IV. DISCUSSION 
In this study, an adaptive mixture ICA algorithm was 

applied to EEG collected during knee and ankle 
contractions. Two distinct mixture models were generated 
without prior knowledge of the underlying exercises. Each 
model represented a spatially fixed distribution of source 
signals. For all subjects, one of the two ICA mixture models 
best fit the EEG signals collected during ankle exercises and 
the other best fit the EEG collected during knee exercises. 
Therefore, we called these models the ankle model and the 
knee model, respectively.  

For 3 of 5 subjects, exercise repetitions (on a single trial 
basis) were categorized as knee or ankle with 100% 
accuracy. For the remaining subjects, isometric exercises 
were accurately categorized but some isotonic exercises 
were not. We expect that for these subjects, the isotonic 
exercises elicited a distribution of electrocortical activity that 
was different from that elicited by the isometric exercises. It 
would be interesting, in these cases, to allow the ICA 
algorithm to identify up to 4 mixture models (a task we leave 
for future work).   

The locations of clusters of electrocortical sources in the 

primary motor cortex were consistent with the expected 
somatotopic distribution of the recruited muscles. We 
presume that the left and right lateral motor cortex clusters 
(brown and purple, Fig. 3) were the result of active trunk 
stabilization, which was required while sitting on the 
exercise bench. In addition, the medial motor cortex cluster 
(yellow, Fig. 3) for the knee model was located towards the 
top of the inter-hemispheric fissure in the left motor cortex, 
while the same cluster for the ankle model was located 
deeper in the inter-hemispheric fissure. These locations are 
consistent with the somatotopic arrangement of the right 
knee and the right ankle in the primary motor cortex. 

 

 
Fig. 3.  Clusters of electrocortical source equivalent current dipoles 
localized to (green) anterior cingulate, (blue) posterior cingulate, (red) 
visual, (yellow) medial left motor, (brown) lateral left motor, and 
(purple) lateral right motor cortices. Two equivalent current dipole 
models are shown; (top) the model best fitting the EEG channel 
signals during ankle exercises and (middle) knee exercises. Small 
spheres indicate the equivalent current dipole locations for single 
electrocortical sources for single subjects; larger spheres indicate 
geometric cluster centroids. Clusters from the two models were paired 
by minimizing the Euclidean distance between cluster centroids 
(cluster pairs are shown in the same color; light shades represent the 
dipole model for ankle exercises and dark shades represent dipole 
model for knee exercises). (Bottom) geometric cluster centroids for 
both models are overlaid; clusters within the same pair that were 
significantly different from each other, in principle component 
analysis space (i.e., the space in which k-means clustering was 
performed), are indicated by * (α = 0.05).  

 
Fig. 2.  Independent component analysis (ICA) models were assigned 
to categories ankle or knee based on which model best fit the EEG 
channel signals recorded during ankle and knee exercises, 
respectively. The average difference in the likelihood between the two 
models for each subject and each exercise type is shown. A positive 
difference indicates that the ICA model was able to correctly 
differentiate ankle exercises from knee exercises. Error bars represent 
± 1 standard deviation. For all subjects and conditions, the likelihood 
of the respective ICA models correctly predicted the joint exercised, 
except for Subject 2 isotonic ankle exercises and Subject 5 isotonic 
knee and ankle exercises. In these cases, the average difference in the 
likelihood was negative, indicating incorrect predictions.  
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It is possible that certain sources of electromyographic or 
electroocular artifact were present during ankle and not knee 
exercises (or vice versa), even after removing artifacts using 
ICA. This would have positively influenced the prediction of 
knee vs. ankle action. To avoid this, subjects were seated in 
the same position for all experimental conditions and were 
instructed to keep their gaze forward. In addition, they were 
instructed to engage only the right leg during each exercise 
(i.e., subjects were not permitted to grab the exercise bench 
to generate more force).  

To our knowledge, this work is the first to establish that 
ICA-based mixture models can distinguish underlying motor 
tasks that have different somatotopic arrangements, even 
within the same hemisphere. Future work will attempt to 
decode exercise type (isometric/isotonic, flexion/extension, 
high/low joint torque) from the spectro-temporal features of 
the electrocortical IC processes. 

V. CONCLUSION 
An adaptive mixture ICA algorithm generated two distinct 

mixture models from a set of EEG signals recorded during 
knee and ankle actions, without prior knowledge of the 
underlying exercise. The fit of the models to single trial EEG 
distinguished knee exercises from ankle exercises. We 
believe that combining spatial characteristics derived from 
ICA with classifiers based on spectro-temporal properties of 
electrocortical processes may be beneficial for non-invasive 
BCI. In addition, because ICA has enabled EEG-based 
electrical neuroimaging during locomotion, we believe that 
the above approach may be applicable to neurorehabilitation 
of gait, including monitoring cortical plasticity and 
controlling robotic lower-limb exoskeletons.  
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