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Abstract— Typically BCI (Brain Computer Interfaces) are
found in rehabilitative or restorative applications, often al-
lowing users a medium of communication that is otherwise
unavailable through conventional means. Recently, however,
there is growing interest in using BCI to assist users in searching
for images. A class of neural signals often leveraged in common
BCI paradigms are ERPs (Event Related Potentials), which
are present in the EEG (Electroencephalograph) signals from
users in response to various sensory events. One such ERP is
the P300, and is typically elicited in an oddball experiment
where a subject’s attention is orientated towards a deviant
stimulus among a stream of presented images. It has been
shown that these types of neural responses can be used to drive
an image search or labeling task, where we can rank images
by examining the presence of such ERP signals in response to
the display of images. To date, systems like these have been
demonstrated when presenting sequences of images containing
targets at up to 10Hz, however, the target images in these tasks
do not necessitate any kind of eye movement for their detection
because the targets in the images are quite salient. In this paper
we analyse the presence of discriminating EEG signals when
they are offset to the time of eye fixations in a visual search
task where detection of target images does require eye fixations.

I. INTRODUCTION

Recently there is growing interest in using EEG (Elec-

troencephalograph) signals to label images [1], [2]. By

examining neural signals from users in response to present-

ing images to them, we can determine information about

the images through the interpretation of them by the sub-

ject. The EEG signals that are generated in response to a

stimulus such as image presentation are more commonly

referred to as ERPs (Event Related Potentials) and are

known to have idiosyncratic components reflecting attention-

orientating events, such as a subject noticing a particular

target within a stream of images. This phenomenon is more

commonly known as P300 and has a well-established history

of study [3]. The oddball paradigm is commonly used to

elicit P300, where a subject is asked to count or respond

when a particular stimulus appears on-screen. The idea is

that the subject is unaware when the target stimuli will

appear, thus the appearance generating this ERP component

reflective of orientation of attention.

Using EEG signals to label or rank images is of practical

interest as many types of images cannot be automatically
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labelled by a computer, and thus still require a human-in-

the-loop. Examples of this include radiologists examining

medical images or intelligence analysts viewing geo-spatial

data. Aside from the demonstrated image sets used in pre-

vious studies that leverage this EEG annotation technique,

a large open question remains as to what other application

domains could this technique be used in. In previous work,

the properties defining the target images to be detected did

not necessitate any eye movement because the target is

dominant within the image and so a RSVP (Rapid Serial

Visual Presentation) paradigm can be used with speeds as

high as 10Hz.

From vision science we know that some targets within

image streams are not always salient, and can often require

search involving eye movements [4]. Obvious examples of

this include an airport security screener searching for a broad

range of targets fixating on numerous locations within an x-

ray image, or a radiologist similarly fixating on regions of

a medical scan to search for abnormalities. These types of

search activities require a number of eye fixations where

each fixation within the image reveals information as to

whether that region or the image is a target. Past work has

assessed parameters of EEG-annotation techniques on image

sets which have been displayed in fast RSVP paradigms. In

our work we seek to examine if the general technique could

be extended to determine whether individual fixations on an

image could reveal target information. Thus, by performing

such an action we would not only identify targets, but also

their potential locations within images.

EEG signals extracted with regard to a fixation time are

known as EFRPs (eye-fixation related potentials). Sajda [5]

has explored a technique for detecting faces or people as

targets and has confirmed that in such cases, pre-fixation

differentiating EEG activity is present, showing that the

user could see the target before fixation, and thus fixated

to confirm. While visual search is often guided by cues,

and target objects to be detected can be salient, we sought

to determine the case where fixations do not occur as a

confirmation of a target but are necessary in order to detect

the target. In this regard we show that a different pattern of

neural activation occurs when a subject searches for a target

without prior knowledge pre-fixation as to whether it is a

target or not.

In this paper we determine the capability to detect these

ERP signals when they are offset from the time of a fixation.

The idea is that fixations related to detecting targets should

display a differentiated EEG signal. Fixations were detected

by means of EOG (Electrooculogram) by examining the
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VEOG and HEOG channels. In section 2 we outline our

experiments, the reasoning behind these, its parameters, and

our experimental setup. In section 3 we present our results

and in section 4 we present a conclusion and future work.

Fig. 1. The top row shows examples of the stimulus target objects used,
and the bottom the non-target objects.

Fig. 2. An example of a frame. The bottom left corner contains a target
stimulus object example. The object stimuli are increased 200% in size so
that they can be seen more easily here.

II. EXPERIMENT

To address whether we can extract differentiated EEG

activity related to target detection offset from the time of

eye fixations we constructed an experiment whereby each

subject was required to perform a search task on an LCD

screen. In each of the 4 corners of the 24 inch (1680x1050)

screen, a small stimulus was present which was either a target

or a non-target object. The experiment was designed so that

when the subject’s gaze remains fixed on the central fixation

cross (Fig. 2), they would remain unaware as to whether any

of the objects are a target until the time of fixation. These

same target and non-target object stimuli were confirmed not

to be pre-attentively salient in a later experiment using the

same subjects. By evaluating the reaction times for detecting

the same objects in an array serial search task we found that

an increase in distractor objects both increased the detection

times and hindered the detection performance of a subject

in an RSVP paradigm, thus confirming that these targets did

not “stand out” and thus required serial search [4]. The target

object to be detected and counted was a broken circle with 2

lines, while the non-targets were a broken circle with 3 lines.

Examples of these are given in Fig. 1. By using such stimuli

we were able to contain detection of the target item to the

time of fixation. Subjects also confirmed whilst staring at the

central fixation cross that they were unaware as to whether

any of the corner objects were indeed targets.

The experiment was broken into 16 blocks, with each

block containing 16 frames. Preceding each block, a search

pattern was presented on-screen for 10 seconds to indicate

the route to be followed to examine the objects for that block

(shown by the arrows in Fig. 2). A white circle then appeared

in the centre of the screen to indicate that a fixation cross

would appear in 500 milliseconds after which the subject is

expected to follow the given search pattern. At the end of

a block, a subject then reports the total number of targets

observed. Each frame was displayed for 2,500 milliseconds.

Within that time, the subject was expected to view all 4

corner objects following the outlined pattern, and to then

return their focus to the central fixation cross. This central

fixation cross would then be replaced by the warning white

circle where after 500 milliseconds the fixation cross would

reappear, indicating the next frame was about to appear.

The search pattern within each block was kept consistent,

but changed from block to block, hence displaying the search

pattern at the beginning of the block. The arrows used

to indicate the search pattern were superimposed over all

frames for that block so that the subject would not forget the

pattern. With A,B,C,D referencing each corner (see Fig. 2)

on the screen (with E as the central fixation) we permuted

this sequence to create 8 distinct search sequences, each

consisting of 5 movements. 32 frames, each containing 4

corner stimuli, were then generated for that sequence. The

probability of any one object stimulus being a target was kept

to 0.125. Each of these 8 populated sequences were then cut

in half to create the 16 blocks. In this way the target count

per block would not be predicted. The order of these blocks

for each subject was randomised.

Fig. 3. EOG Channels: HEOG on top and VEOG on the bottom.

A. Data collection

For data recording, we used a KT88-1016 EEG system

with a linked mastoid reference and the chin as ground.

Ag/AgCl electrodes were used with a 10-20 placement cap

at locations F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5,

P3, Pz, P4, T6, Oz. Signals were digitized at 100Hz and

subsequently band-passed from 0.1Hz to 20Hz. A 2 channel

pendant EEG device was used to record EOG (VEOG and
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HEOG). Subjects were seated 1.2m away from the screen.

This meant each object stimulus was perceivable within .72

degrees.

An Intel Quad Core PC 2.4GHz with 3.2 gigabytes RAM

and an Nvidia 8600GT graphics card was used for stimulus

presentation and recording. All time stamping was carried

out on this machine. With ethical approval granted to carry

out these experiments from the university ethics board we

recruited a total of 7 subjects from the postgraduate and staff

population on campus. 4 males and 3 females were recruited

with an average age of 27.3, and a standard deviation of 4.7.

One of these was left handed.

B. EFRP Extraction

By using the EOG channels (VEOG and HEOG) we were

able to find the time indexes of fixations on the object stimuli.

Eye movements along one plane (i.e. horizontal) generate

signals more prominently on one channel than the other, and

the voltage deflections are sensitive to the direction of eye

movement. Eye movements in any direction are typically

characterised by either positive or negative voltage deflec-

tions on both channels. Since search patterns were consistent

within blocks, the EOG patterns remained fairly consistent

in that they always displayed a stereotyped sequence of

deflections, other noisy EOG components were often present

though. An example of a subject’s eye movement search

pattern for one such frame is shown in Fig. 3. With 8 basic

eye movements used across the blocks, we could detect

the fixations in the EOG signals using a simple scheme of

matching these deflection patterns to the movement most

likely to have generated them. Deflections present in the

EOG signals not conforming to the stereotyped sequence for

that block were discarded. In the case of two consecutive eye

movements occurring in the same direction, the second peak

was taken as the fixation upon the object (the first assumed

to be upon the arrow). The time at which the EOG signal(s)

peaked were taken as the index time from which to extract

EEG activity. The peak times were detected by finding zero-

crossings of the first derivative of the signal. To mitigate

noise in the EOG signals, we disregarded eye movements

where the combined absolute value of the peak height(s) fell

below 2 standard deviations for that movement.

In an ideal circumstance we should have been able to

extract 128 target fixations, and 896 non-target fixations

in total for each subject. In practice, for each subject (1

to 7) respectively we extracted the following target/non-

targets counts: 111/778, 107/768, 117/825, 109/772, 113/761,

118/838, 114/794.

Using these labeled time indexes of fixations, we extracted

windows of the EEG signal starting post-fixation 0ms to

1000ms for each of the 16 channels. These were then

concatenated to form a feature vector of length 640 which

was then normalised to the range [-1,1]. No distinction was

made to the eye movement associated with each target and

non-target, only that that feature vector represented a target

or non-target fixation.

III. RESULTS

A. ERP Analysis

Both early visual EFRP and later discriminating compo-

nents are visible in the grand average scalp plots shown in

Fig. 4. The first notable component is the fixation lambda

potential [6] (related to the visual P100) which peaks at

occipital sites at 80ms (visible on the grand average of

channel Oz in Fig. 5). At this time a negative component

was also present at frontal sites which subsequently peaked

around 120ms, where it then followed a wide spatial and

temporal spread continuing to 200ms. Early frontal nega-

tivities have been shown to occur in combination with the

lambda potential following this time-course [7], while the

latter activity is consistent with the visual N1. A posterior

negative component was seen across subjects typically peak-

ing between 250ms and 350ms, and occurring later and more

generally enhanced in amplitude for target objects across

subjects. This activity is consistent with a posterior visual

N2 in a feature discrimination task [8]. A positivity was seen

far frontally between 280ms and 400ms peaking typically at

320ms for both object classes, and was diminished across

users for targets. This dimished activity may be due to the

an ealier counterpart anterior negativity related to posterior

N2 activity observed for targets.

Differentiating activity between the detection of the target

and non-target objects could be seen emerging at 250ms

for most subjects, but prominent differences appear on the

grand average scalp maps at 500ms with the presence of a

widely distributed positive component present over occipital

and parietal regions, which is consistent with P3b activity

expected to occur with an oddball task such as this [3]. This

posterior positivity began for most subjects at 460ms and

continued on to 600ms. A frontal negativity emerged for

subjects for the target objects at typically 600ms (starting

as the p3b activity diminished) and continued for up to

1000ms typically diminishing with a parietal distribution.

Previous work examining target detection in search tasks

have shown a similar late occurring component with target

detection [1]. This component may be reflective of a self-

monitoring process.

B. Machine Learning Analysis

To examine and to derive a set of measures of the

detectability of the EEG signal (P300) associated with the

target fixations, we used a support vector machine (SVM)

with radial basis function. Using 20-fold cross-validation for

each subject, we randomly sampled a training set of 80 target

and 80 non-target examples, and then used these to train an

SVM model. An independent testing set of 27 target and

27 non-target examples were randomly sampled from the

remaining feature vectors. The SVM models’ gamma and

cost parameters were found by using a gridsearch approach

on the training data only. The test sets used to generate final

results were always kept seperated from the training set.

For each iteration of the cross-validation, an ROC (Receiver

Operating Characteristic) curve was generated and its AUC
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Fig. 4. Grand average scalp plots - target plots shown on top, non-target plots shown on bottom

(Area Under Curve) calculated. These AUC values were then

averaged and are displayed in Table 1 for each subject. The

AUC measure provides a ratio independent measure of the

general discriminative capability of the constructed classifier.

We also formed another 3 separate feature vectors, the first

using only signals from anterior nodes (F7, F3, Fz, F4, F8,

VEOG, HEOG), the second using posterior nodes only (T5,

P3, Pz, Oz, P4, P6) and the third using signals from all 16

channels but only extracting 600ms pre-fixation. We wanted

to confirm that the discriminative information learned by

the classifier was not largely derived from the EOG activity

alone (anterior sites), and that this activity only appeared

after fixation. The AUC averages for these are displayed in

Table I.

Using the full features from all channels we obtained

an average AUC of .76 across subjects. Using only signals

from the frontal nodes we still obtained an above-chance

classification rate, however, this lowered rate confirms that

a majority of the discriminative information learned by the

classifier came from posterior nodes. This behavior fits with

the typical scalp topography of the P3b. No discriminative

information was learned in the EEG signals pre-fixation

further confirming object detection was offset to the time

of fixation.

Fig. 5. Grand Average for site Oz

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have presented evidence that EFRPs can

be extracted from an EEG signal (using EOG) that show

differentiating activity related to target object detection. This

contrasts and improves upon previous work highlighting that

not all visual search tasks allow for a subject to be aware

TABLE I

AUC RESULTS FROM CLASSIFIERS

Subject AUC-All AUC-Posterior AUC-Anterior AUC-PreFix

1 .74 .67 .58 .49
2 .81 .73 .56 .51
3 .79 .73 .66 .51
4 .85 .75 .66 .50
5 .74 .66 .58 .51
6 .68 .68 .55 .48
7 .68 .61 .48 .52

Average .76 .69 .58 .5

pre-fixation of whether an object/area is or contains a target

[5]. Eye movements related to target search in real world

tasks are often known to be guided by bottom-up features,

global image properties, and factors such as expertise. Our

future work will focus on evaluating the application of these

EFRP signals in such real world search scenarios focusing

on natural datasets.
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