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Abstract— Brain Machine Interfaces (BMI) aim at building
a direct communication link between the neural system and
external devices. The decoding of neuronal signals is one of the
important steps in BMI systems. Existing decoding methods
commonly fall into two categories, i.e., linear methods and
nonlinear methods. This paper compares the performance
between the two kinds of methods in the decoding of motor
cortical activities of a monkey. Kalman filter (KF) is chosen as
an example of linear methods, and General Regression Neural
Network (GRNN) and Support Vector Regression (SVR) are two
nonlinear approaches evaluated in our work. The experiments
are conducted to reconstruct 2D trajectories in a center-out
task. The correlation coefficient (CC) and the root mean
square error (RMSE) are used to assess the performance. The
experimental results show that GRNN and SVR achieve better
performance than Kalman filter with average improvements of
about 30% in CC and 40% in RMSE. This demonstrates that
nonlinear models can better encode the relationship between the
neuronal signals and response. In addition, GRNN and SVR are
more effective than Kalman filter on noisy data.

I. INTRODUCTION

A BMI system is to set up a communication link between
the neural system and machines. It records electrophysiolog-
ical activities and translates raw neural signals into appropri-
ate commands to drive some devices such as computers and
neuroprosthetic devices [1], [2]. Thus, BMIs have potentials
in many applications. For example, in rehabilitation, BMIs
can help those people with severe physical disabilities to
restore some functions.

With the rapid progress of microelectrodes and integrated
circuits, spike trains can be easily recorded by the intrac-
erebral microelectrode array. This motivates a large number
of BMI systems to use spike trains to figure out a subject’s
intention. Some existing work use linear models to decode
spike signals, including the population vector method [3],
[4], the Wiener filter [5], [6], and Kalman filter [7], [8], [9].
Also, a few nonlinear methods have been proposed to attack
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the decoding problem, e.g., particle filter [10], point process
methods [11], [12], and artificial neural networks [13], [14].
Facing the problem of decoding motor cortical activities
of the monkey, this paper compares the performance of
a linear model, Kalman filter, with two nonlinear models,
General Regression Neural Network (GRNN) and Support
Vector Regression (SVR). Kalman filter has been proven to
be a relatively effective linear method in decoding moving
trajectory. General Regression Neural Network is a kind of
kernel regression technology which can approximate smooth
functions given enough data. Support Vector Regression
shows high performance for brain machine interfaces in
simulation [15], [16]. Based on spike trains collected from
the primary motor cortex of the monkey, we apply the above
three methods to reconstruct 2D trajectories. Root mean
square error (RMSE) and correlation coefficient (CC) are
used to evaluate the performance of these algorithms. The
experimental results indicate that the performance of both
two nonlinear methods (GRNN: CC = 0.71 ∼ 0.85, RMSE =
8.3mm ∼ 11.3mm SVR: CC = 0.71 ∼ 0.86, RMSE= 7.8mm
∼ 10.8mm) are superior to the linear one (KF: CC = 0.34
∼ 0.73, RMSE = 10.9mm ∼ 17.3mm).

II. DATA COLLECTION

A macaque monkey was trained to perform a center-out
task, i.e., moving a circle controlled by a joystick to a target
on a computer screen. The target appears randomly in one
of the four locations of a circle. If the monkey can hit the
target in a small amount of time, the task is considered to
be successfully performed.

If the successful rate of the task was larger than 95%, the
monkey was well trained. Then, a 96-electrode Utah array
(Blackrock Microsystems Inc., USA) was implanted in the
monkey’s primary motor cortex (M1). Neural signals were
recorded by Cerebus 128TM (Cyberkinetics Neurotechnol-
ogy Systems, Inc.) at a sampling rate of 30kHz. Positions
of joystick were recorded by a micro-controller system with
a sampling rate of 20Hz. Both the neural signals and the
positions of the joystick were recorded synchronously.

After that, the band range of neural signals were filtered
between 250Hz and 7000Hz. The threshold crossing method
and template matching method were used to detect and
classify spikes. Fig. 1 depicts some examples of the spikes
and trajectories of the joystick. The purpose of decoding is
to construct the mapping between the neuronal signals and
trajectories.

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 4207

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



(a)

(b) (c)

Fig. 1: (a) Spikes detected from primary motor cortex. (b)
Trajectory examples of joystick along x and y axes. (c) The
typical trajectories of the joystick in 2-D plane in the center-
out task.

III. METHODS

A. Kalman filter

Suppose the target state at time k is xk and the neural
activity is zk, Kalman filter defines two equations:
time update equation:

xk = Axk−1 +wk−1, (1)

measurement update equation:

zk = Hxk +vk, (2)

where wk and vk are random variables representing the
process and measurement noise respectively. A is a state
transition matrix describing the relation between the state
at time k-1 and k; H is the observation model which maps
the state space to the observed space.

In order to obtain an estimate at each time step, the
two equations are alternatively updated. First, we use (1)
to produce a priori estimate for the current time step by
projecting previous state. Then, (2) is used to obtain a
posteriori estimate by incorporating a new measurement into
the priori estimate. The details of Kalman filter can be found
in [18].

B. General Regression Neural Network (GRNN)

GRNN is a method using Parzen window to estimate the
probability density function (pdf) from observed samples. It
can be used to deal with regression problems without the
assumption of linearity. The key formula of GRNN is as
follows:

ŷ(x) =
ΣN

i=1yie−
D2

i
2σ2

ΣN
i=1e−

D2
i

2σ2

, (3)

where Di is the Euclidean distance between the input x
and the ith observed sample. More details of GRNN can
be found in [17]. The only parameter in GRNN model is
the bandwidth σ , which decides the smoothness of the pdf
curve. If σ is too small, the pdf will be sensitive to every
point; if it is too large, it will smooth the pdf curve and lose
amount of information about the joint distribution of f (x,y).
In the experiment, we adopted cross-validation method to
determine σ by minimizing the root mean square error in
training set.

C. Support Vector Regression (SVR)

Support Vector Machine (SVM) is a popular supervised
learning algorithm used for classification and regression. It
is grounded in the framework of statistical learning theory.
Support Vector Regression (SVR) is the method when SVM
is applied to regression problems. Some regression technolo-
gies find a function f (x) that has the smallest deviation
between observed and predicted responses on training data.
In order to achieve better generalization performance, instead
of minimizing only the error on training set, SVR attempts
to minimize both the training error and a regularization term
which controls the complexity of the model.

LIBSVM is used in this experiment [19]. The ver-
sion of SVR we adopt is ε-SVR. Given a training set,
{(x1,y1),(x2,y2), ...(xn,yn)} the ε-SVR seeks a function
f (x) whose deviation at each training point does not exceed
ε , meanwhile the function itself is kept as flat as possible.
The function f (x) =< w,x >+b is obtained by solving the
following optimization problem:

minimize :
1
2
||w||2 +CΣN

i=1(ζi +ζ ∗
i ), (4)

s.t. : −(< ω,xi >+b− yi)≤ ε +ζi,

< ω,xi >+b− yi ≤ ε +ζ ∗
i ,

ζi,ζ ∗
i ≥ 0,

where ζi,ζ ∗
i are non-negative slack variables. The sum of

ζi,ζ ∗
i constitutes the training error. The parameter C is used

to make a trade-off between the flatness of function f and
the penalty to the training error. More details about support
vector regression can be found in [20].

IV. EXPERIMENTS

The quality of reconstructed trajectory was assessed by
two criteria: the correlation coefficient (CC) and the root
of mean square error (RMSE). CC denotes the correlation
between the prediction and real trajectory, and RMSE is the
Euclidean distance between them,

CC =
Σt(xt − x̄)(x̂t − ¯̂x)√

Σt(xt − x̄)2Σt(x̂t − ¯̂x)2
, (5)

RMSE =

√
1
T

ΣT
t=1(xt − x̂t)2. (6)

In order to fully assess the ability of the algorithms, we use
the cross-validation method to search for the optimal values
of the parameters in these models.The smooth parameter σ
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Fig. 2: Comparisons between the real trajectories and the
prediction results of the different algorithms. (a) Trajectories
of joystick along x-direction. (b) Trajectories of joystick
along y-direction.
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Fig. 3: Changes of CC and RMSE of different decoding
methods against the size of training set. The performance
of GRNN and SVR are similar and superior to Kalman filter
with the same training size.

of GRNN is set to 2.5. In ε-SVR, the radial basis kernel
is used. After the grid-searching procedure, the gamma in
kernel function is set to be 0.005, parameter C is set to be
2048.

First, we give a visual view of the decoding results of
Kalman filter, GRNN, and SVR on a 60-second trajectory.
As shown in Fig. 2, it can be found that all results predicted
by the three methods approach the real trajectory, while the
GRNN and SVR achieve slightly better predictions.

Fig. 3 shows the performance of each method on the
different sizes of training set. For a same size of training
data, GRNN and SVR perform superior CC and RMSE,
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Fig. 4: CCs and RMSEs of different decoding models when
tested on data of different time spans.

compared with those of Kalman filter. When the training
samples increase, the performance of these methods also
improves. To reach a similar performance, the size of training
data required by GRNN and SVR are much smaller than
Kalman filter. It is worth noting that although more training
samples makes the models more precise, they also lead to
high computational and memory cost. Thus, it is valuable
to choose an appropriate size of training data to obtain both
high performance and computational efficiency, e.g., 3000 in
our experiment. In the subsequent experiments, we use the
decoding models trained on the data with the size of 3000.

As the pattern of neural activity can be dynamic, we
conduct an experiment to evaluate the decoding models on
neural data recorded in different time spans. The models
are trained on the data of the first 5 minutes. The rest data
are partitioned into several subsets, each having a length of
5 minutes. The CCs and RMSEs of these testing subsets
are shown in Fig. 4. As time goes, CC of Kalman filter
drops from 0.68 to 0.39, and RMSE increases by about 60%.
Comparatively, GRNN and SVR perform much better than
Kalman filter. It means that GRNN and SVR are more stable
than Kalman filter in a long time period. In addition, SVR
performs a little better than GRNN.

Finally, to obtain a general performance for the three
models, we collect 5 segments of neural data and the corre-
sponding positions of the joystick. Every segment contains
10 minutes neural activity together with the positions of the
joystick. For each data segment, models are trained using the
first 5-minute data and the rest 5-minute data are used for
testing. Fig. 5 shows the results. In general, GRNN and SVR
still perform better than Kalman filter, which demonstrates
that the two nonlinear models are more robust than the linear
one.

V. DISCUSSION AND CONCLUSION

In this paper, Kalman filter, General Regression Neural
Network, and Support Vector Regression are taken as de-
coding methods. Correlation coefficient (CC) and the root
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Fig. 5: CCs and RMSEs for on 5 data segments. Kalman filter
has the lowest value of CC and highest value of RMSE.

mean square error (RMSE) are adopted to assess the perfor-
mance of these methods. Decoding results demonstrate that
nonlinear methods such as GRNN and SVM can reconstruct
the 2-dimensional trajectories in the center-out task more
accurately and effectively than Kalman filter.

Although Kalman filter has been successfully used to
reconstruct 2-dimensional trajectory in existing work. Our
experiments show that it can not produce a satisfactory per-
formance in the center-out paradigm. Besides the limitation
of linear assumption between neural activity and movement
it makes, Kalman filter also assumes that current state is
linear with previous state, it means the trajectory is likely to
be a random walk, while as Fig. 1b shows, the trajectories in
the center-out task change sharply at some time steps. Thus
it is not the best choice for the center-out task or similar
paradigms.

The experimental results show that nonlinear methods
(GRNN and SVR) have great advantages in building BMI
systems. To achieve high performance, less training samples
are required, which means the lower computational and
memory cost. They work well in the presence of noise. In
addition, the stability of these models enable systems to be
effective during a long time without the need of retraining.

All these characters indicate the superiority of GRNN and
SVR in decoding motor cortical activities in BMI systems.
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