
  

  

Abstract— One of the primary challenges in noninvasive 
brain-computer interface (BCI) control is low information 
transfer rate (ITR). An approach that employs a power-based 
sequential hypothesis testing (SHT) technique is presented for 
real-time detection of motor commands. Electroencephalogram 
(EEG) recordings obtained during a BCI task were first 
analyzed with a hypothesis testing (HT) method. Using serial 
analysis we minimized the time to determine a cued motor 
imagery cursor control decision. Experimental results show that 
the accuracy of the SHT method was above 80% for all the 
subjects (n = 3). The average decision time was 3.4 s, as 
compared with 6.0 s for the HT method. Moreover, the 
proposed SHT method has three times the information transfer 
rate (ITR) compared with the HT method. 

I. INTRODUCTION 
O control brain-actuated devices, especially 
neuro-prostheses, both a stable control signal with a 

minimal error rate and fast decision making are critical issues 
[1,2]. Brain-computer interface (BCI) based on 
electroencephalogram (EEG) bears the advantage of low cost 
and wide availability, specifically, not exposing the subjects 
to the risk of brain surgery. However, the EEG-based 
methods are limited by low information transfer rate as well 
as susceptibility to certain artifacts such as electromyograph 
(EMG) [3,4]. 
 The term “classification,” used in BCI literature, generally 
implies decision making or response selection. EEG-based 
BCIs make binary or multiple decisions as they seek to 
recognize two or more different mental states. To facilitate 
decoding “motor intent”, machine learning techniques are 
applied to find subject-specific EEG features that maximize 
the separation between the patterns generated by executing 
the mental tasks, and to train classifiers that minimize the 
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classification error rates of these specific patterns. These 
methods typically reduce to training error minimization with 
some regularization without optimizing decision time 
explicitly. Examples include independent component analysis 
(ICA) [5], nonlinear artificial neural networks (ANNs) [6], 
common spatial pattern analysis (CSP) [7] and support vector 
machines (SVM) [8].  

Hypothesis testing (HT) and sequential hypothesis testing 
(SHT) are two branches of statistical decision theory that 
provide a theoretical framework for understanding how 
decisions are made. HT converts a single observation into a 
categorical choice. SHT is a natural extension to HT that 
accommodates multiple pieces of evidence observed over 
time and minimizes the expected sample size for given error 
probability. Thus SHT is a valuable tool for psychophysical 
analysis, particularly for studying the trade-off between speed 
and accuracy [9]. Although SHT has been widely used to 
conduct binary hypothesis testing [10,11], to the best of our 
knowledge it has not been explored in the context of BCI 
control. Therefore, in this study, we investigate the 
effectiveness of using an SHT method for binary 
classification to improve the speed of BCI and evaluate the 
trade-off of speed and accuracy. 

II. METHOD 

A. EEG Recordings 
Three subjects without BCI experience participated in this 

study. They gave informed consent for the study, which had 
been reviewed and approved by the Johns Hopkins University 
Institutional Review Board. EEG signals were acquired with 
a QuickCap 64-electrode scalp cap connected to a Neuroscan 
SynAmps2 amplifier channel (Neuromedical Supplies, Inc.) 
in the modified 10/20 International System and sampled at 
250Hz. The output signals were spatially filtered using 
common average referencing. The weighted sum power 
spectrum of C3 and C4 (8-13Hz) in the mu rhythm was 
computed as EEG feature. The subjects performed an 
EEG-based cursor control experiment by analyzing the 
resulting EEG feature with a two-threshold HT statistical 
classifier. 

B. Experimental Paradigm 
During each training trial, a three-state (move up, move 

down, remain still) EEG-based BCI was used to control the 
vertical position of a cursor. In this program, a target was 
displayed either at the top (relaxation trial) or the bottom 
(movement trial) of the computer screen, with the 
imagery-controlled cursor in the middle. The subject’s task 
was to perform mental activity of one type to drive the cursor 
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to hit the target. A movement decision was made based on the 
combined power in the mu band (8-13 Hz) of the C3 and C4 
electrodes with the two-threshold HT method. To determine 
the power, we used Burg’s periodogram algorithm on 
window size of 1 second with 50% overlap. If the cursor 
touched the target (10 steps away) within 15 seconds, the trial 
was considered a success. The subject was then presented 
with a green circle for a success, or with a red circle for a 
failure. Complete EEG and cursor movement data were 
stored for later offline SHT analyses.   

C. Two-threshold HT Method 
We began with a labeled training set

1 1{( , ),..., ( , )}L Lx y x y=S , where each training pair 

{ }( , ) 0,1l lx y ∈ ×χ . Here χ is an infinite set ( =χ ). Each ly
can only take one of two values, represents the class label of 
that sample. Each training pair ( , )l lx y is drawn 
independently from some unknown joint distribution XYP . 

0 |( ) ( | 0)X Yp x P x y = and 1 |( ) ( | 1)X Yp x P x y = denote the 
class conditional distribution. We take the prior probabilities 
for the label are uniform, i.e., ( 0) ( 1) 1/ 2Y YP y P y= = = = . 

Given S , we wish to train a model so as to classify, i.e., to 
assign a label of 0 or 1 to a new sample x . This sample is 
drawn according to the unknown distribution XP , but its label 
is unavailable. If we do have access to the true conditional 
distributions 0p and 1p , the decision variable f  is given by 
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A straightforward comparison with a single threshold 
typically results in high error rates because the two 
distributions overlap considerably. An alternate approach is 
to select two conservative thresholds 1η and 2η . No decision 
is made if the sample lies in the overlapping intermediate 
zone. The decision rule is  
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which is called two-threshold HT method.  

D.  SHT Method 
With two thresholds, increasing 1η or decreasing 2η  may 

decrease the speed or likelihood of making a decision, but 
increase the chance that any decision made is correct. There is 
an inherent trade-off between the accuracy and decision time. 
One powerful approach to solving this conundrum is to use 
SHT. A sequential hypothesis test is formulated as 
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where 1 1( | )np HX is the likelihood function for observing 
the sample sequence nX if the hypothesis 1H is true, and 

0 0( | )np HX  is the likelihood function of observing nX given 

that the hypothesis 0H is true. To decide which hypothesis to 
be accepted is determined by comparing the ratio nf with 
some upper and lower bound values.  
 Assuming the samples follow a Gaussian distribution, Eq. 
(3) can be rewritten as 
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where 0μ and 0σ are the mean and standard deviation of the 
distribution 0p̂  and 1μ and 1σ  are the mean and standard 
deviation of the distribution 1p̂ . 

Let 
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decision rule at the nth stage as 
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The number of tests and therefore the number of data 
segments ix  required to terminate the test depend on the 
detection thresholds. For example, if the test has very 
conservative thresholds, a large number of observations may 
be required. Increasing the upper threshold may increase the 
number of samples required to terminate the test when 1H  is 
true, and decreasing the lower threshold may increase the 
number of samples required when 0H  is true. In this work, 
we choose 1η  and 2η  on the basis of the operating 
characteristic (OC) curves. 

OC curves depict the inherent trade-off between decision 
time (costs) and accuracy (benefits) of a detection test. Each 
prediction result with one pair of thresholds represents one 
point in the curve. The best possible thresholds would yield a 
point nearest to the upper left corner or coordinate (0,1) of the 
space, representing 100% accuracy and no decision time.  

III. RESULTS 
The following analysis illustrates the process and potential 

of the proposed SHT. All the subjects yield similar trends in 
the neurophysiological properties and feature distribution. 
Therefore, we show the results of a single subject for sake of 
clarity.  

A. Neurophysiological Outcome 
   Fig. 1 depicts the neurophysiological properties of subject 
1. It shows the EEG spectrum in 0~30Hz and the associated 
averaged logarithmic transform of the power in decibel 
topographies for each selected frequency component for 
each relaxation (left) versus motor imagery (right). The 
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10*logP scalp distributions show that there are obvious 
differences between the mental tasks in 8-13Hz, localized in 
those electrodes with higher power values in relaxation 
condition. This comparison reveals aspects of the EEG 
response common to rest and imagery, i.e. the mu rhythm 
decreases or desynchronizes with movement imagery.  

 
(a) 

 
(b) 

Fig. 1. (a) Average 10 Hz power during the two tasks, showing a decrease in 
power over motor cortex during movement imagination.  (b) Average power 
in the classification feature, showing the decrease in power during movement 
imagination is specific to the mu band (8-13 Hz), and beta band (15-20Hz). 

B. Normal Distribution of EEG Features 
The Kolmogorov-Smirnov (KS) test results showed that the 

distribution of average power spectrum density (PSD) in 
mu-rhythm (C3 + C4) is indeed normal. We constructed the 
probability distributions in Fig. 2. The x axis in Fig. 2 displays 
the mean of mu rhythm power. The y axis displays the 
probability density of mu rhythm power. The average PSD of 
relaxation fit a Gaussian distribution with a mean, 57.27μ =
dB/Hz and a standard deviation, 16.85σ = . The average PSD 
of motor imagery fit a Gaussian distribution with 44.74μ =
dB/Hz and 14.98σ = . From this figure, we can see there is 
significant overlap for these two stochastic models, which 
results in a relatively poor discriminability for the HT method 
which will be shown in the next subsection. 

 
Fig. 2. Histograms show the average PSDs of mu-rhythm at Channels C3 and 
C4 at a fixed time window (50samples) are overlaid by two fitted normal 
distributions for two conditions (relaxation vs. motor imagery).   
 

C. Slow Online Single-trial Recognition with HT 
Each subject underwent different runs of 16 trials each (8 

relaxation and 8 movement imagery trials), with a random 
order of presentation. Table I shows the performance of the 
online single-trial recognition with HT method, including 
percent of classification accuracy, mean decision time and 
average information transfer rate (ITR) for each run. The ITR 
of each trial in bits per minutes was calculated as [5] 

2 2 2
1 60[ / min] log log (1 ) log

1
PITR bit N P P P

N L
−⎡ ⎤= + + −⎢ ⎥−⎣ ⎦

 

where N=2 is the number of classes, P (hits/number of trials) 
is the accuracy of classification, and L is the trial length in 
seconds.  Each subject performed differently. Subject 1 has 
the highest accuracy, ITR and the shortest decision time. 
Although the average accuracy is more than 70%, the 
decision time is quite long (~ 11 s). Thus the subjects’ 
average ITR is small. This is unacceptable for a practical BCI 
system.  
 

TABLE I 
PERFORMANCE (PERCENT OF CLASSIFICATION ACCURACY,  

MEAN TIME OF DECISION, ITR) OF HT  
Subject Accuracy Mean Decision Time (s) ITR(bit/min) 
1 80.36% 10.63 2.86 
2 54.46% 12.71 0.17 
3 75.00% 10.74 2.42 
Average 69.94% 11.36 1.82 

 

D. Fast Recognition with SHT 
The SHT procedure is illustrated in Fig. 3. The first segment 

of EEG is used to obtain a measurement, 1x , which in turn is 
used to calculate 1T . However, it can be seen that 1T  lies 
between the two decision thresholds, so no decision is made. 
The next segment of EEG is used to obtain a second 
measurement, 2x . 1x and 2x  are used to calculate 2T  , but 

2T  also lies between the decision thresholds, so no decision is 
made. The next segment of EEG is used to obtain a third 
measurement, the same progress continues until the ninth step

1 2 9, ...x x x , was used to calculate 9T , which lies below the 
lower decision threshold. Therefore we accept 1H  and the 
decision is relaxation.  

To assess the performance of the methods, we used the first 
runs as the training set and the other runs as the testing set. 
The results of accuracy and time for classification are 
summarized in Table II. Since SHT uses non-overlapping 
windows, we ran the HT method on non-overlapping 
windows of data (called HT(I)). Comparing the result of 
HT(I) with HT, we can see there is not only a difference 
between the accuracy, but the decision time has been 
shortened. Comparing the results for HT(I) and SHT, we can 
see the SHT method not only improves the classification 
accuracy but also yields faster decisions. Specifically, the 
average decision time improved to 3.40s.  
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Fig. 3. Decision variable iT versus time for sequential hypothesis testing.   

 
TABLE II 

ACCURACY AND TIME OF CLASSIFICATION  
OF HT AND SHT METHOD 

 

Subject 
HT(I) SHT  

Accuracy  
(%)     

Time 
(s) ITR(bit/min) Accuracy 

(%) 
Time 

(s) 
ITR(bit 
/min) 

 
1 78.13 5.48 2.70 83.33 2.62 8.20 
2 75.00 6.23 2.17 82.29 4.43 4.52 
3 68.75 6.29 1.79     81.94 3.13 7.95 
Mean 73.96 6.00 2.22 82.52 3.39 6.89 

 
Fig. 4. Diagrams displaying the ITR in bit/min for various trial lengths for 
subject 1, incorporating the subject HL’s success rate. The solid line 
represents the maximum possible ITR for an error-free classification result. 
The highest values were obtained for trial lengths of 1 s.  
 

We plot the ITRs of each trial for the two methods for 
subject 1 (Fig. 4). The solid line in the diagrams displays the 
maximum ITR for an error-free classification as a function 
trial length. This graph represents the trade-off between 
having shorter trials, which would result in lower success 
rates, with overly long trials when have higher success rates.  
It can be seen that the SHT method showed improved ITR and 
provided the subject better control over the BCI. The results 
of this study show that trial lengths of 1.2 s could result in an 
ITR of 27.39 bit/min. As we know, there is a physiological 
limit when the mu rhythm is used for control. According to 
ref. [12], the subject requires several hundred milliseconds 
(roughly 500ms) to initiate motor imagery. 
Desynchronization and synchronization of mu oscillations 

need time on the order of seconds to develop because 
relatively large networks contribute to the generation of these 
rhythms.  This suggests that a trial time of 1.2s may approach 
the limit of these physiological delays for reliable decision 
making.  

IV. CONCLUSIONS 
In this paper, a statistical algorithm for real-time detection 

of motor commands in a BCI system is proposed. This 
algorithm is based on a SHT approach in conjunction with a 
mu- rhythm spectral feature for motor imagery and 
relaxation. These features are distributed in a Gaussian shape. 
Post-hoc analysis showed that with the SHT method, the 
classification accuracy can be improved, and the decision 
time can be greatly decreased. The novel SHT method has 
advantages over conventional classification algorithms in 
terms of reliability, simplicity and ITR.   

The algorithm is simple to implement in real time system 
due to its sequential nature and thus should be useful in 
practical BCI applications that require real-time 
data-acquisition, decision making  within the constraints of 
speed and accuracy, such as for guiding wheelchair or 
controlling prosthetic limbs. 
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