
Brisk movement imagination for the non-invasive control of
neuroprostheses: a first attempt

Gernot R. Müller-Putz, Patrick Ofner, Vera Kaiser, Guillaume Clauzel, Christa Neuper

Abstract— The consequences of a spinal cord injury (SCI)
are tremendous for the patients. The loss of motor functions,
especially of grasping, leads to a dramatic decrease in quality
of life. With the help of neuroprostheses, the grasp function can
be substantially improved in cervical SCI patients. Nowadays,
systems for grasp restoration can only be used by patients with
preserved voluntary shoulder and elbow function. In patients
with lesions above the 5th vertebra, not only the voluntary
movements of the elbow are restricted, but also the overall
number of preserved movements available for control purposes
decreases. In this work, a new method for the non-invasive use
of a Brain-Computer Interface (BCI) for the control of the
hand and elbow function is presented.

I. INTRODUCTION

The consequences of a spinal cord injury (SCI), which
results in a loss of sensory, motor and autonomous functions,
are tremendous for the patients. The loss of motor functions,
especially of the grasping function, leads to a life-long
dependency on helping persons and thereby to a dramatic
decrease in quality of life. With the help of neuroprostheses,
e.g. functional electrical stimulation (FES) systems, the grasp
function can be substantially improved. All established FES
systems for grasp restoration can only be used by patients
with preserved voluntary shoulder and elbow function. The
limited possibilities for functional restoration in case of
extended paralysis as well as unexperienced controllers are
the main barriers for a broad use of neuroprosthetic systems
outside of research laboratories. Brain-Computer Interfaces
(BCIs), systems which transform mentally induced changes
of brain signals into control signals [1], might serve as an
alternative human-machine interface. The ideal solution for
voluntary control of a neuroprosthesis would be to directly
record motor commands from the corresponding areas of the
cortex, convert these into control signals and transfer those
to the neuroprosthesis itself, thereby realizing a technical
bypass around the interrupted nerve fiber tracts in the spinal
cord.

Up to now, BCIs are able to detect thought-modulated
changes in electrophysiological brain activity and transform
those signal characteristics into control signals. One option
for measurement of the brain signals is to place electrodes on
the scalp (electroencephalogram, EEG). One prominent men-
tal strategy to operate a BCI is imagination of limb move-
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ments (motor imagery, MI). MI induces measurable changes
of oscillatory components in the ongoing EEG over sen-
sorimotor areas known as event-related (de)synchronization
(ERD, ERS, [2]). First attempts into the direction of EEG-
based control systems for restoration of the hand function
were performed by Pfurtscheller et al. [3] who described
the control of a grasp orthosis by motor imagery. Heasman
et al. [4] reported on a neuroprosthesis controlled with the
alpha rhythm modulated by opening and closing the eyes.
In [5], [6], [7] the Graz-BCI was used to control the hand
movements in two tetraplegic patients controlling a non-
invasive and invasive neuroprosthesis, respectively. Also a
first attempt for the control of hand and elbow function was
reported in [16], where the users were trained to imagine one
limb movement over different time periods, which were then
used for hand and elbow control. In myoelectric prosthesis
(for a review, see [8]) the contraction of remaining extensor
and flexor muscles of the forearm were used to control e.g.
the grip (open/close) as well as the pronation and suppination
of the forearm. This is a well accepted method and inspired
us to this work: a single brisk movement and two consecutive
brisk movement imaginations of the hand were used to serve
as mental strategy to open/close the hand and flex/extend the
elbow, respectively. In this work, a first study introducing this
new kind of control is presented.

II. METHODOLOGY

A. Subjects

Ten healthy right handed subjects (6 females, aged 24.4
± 2.8) participated in the experiment. All of them had
prior experience with BCI measurements. The participants
were comfortably seated in an armchair, with their forearm
fully supported by the armrest, so they could focus on hand
clenching.

B. Signal recording

EEG was recorded with thirty Ag/AgCl electrodes spread
over sensorimotor areas arranged as shown in Figure 1, with
approximately 2.5 cm interelectrode distance. Reference was
placed on the left mastoid, whereas ground was placed on
the right mastoid. EEG signals were recorded using two
g.USBamp amplifiers (g.tec, Graz, Austria). The sample
frequency was set to 512 Hz, with a notch filter at 50 Hz,
a low-pass filter at 0.5 Hz, and a high-pass filter at 100 Hz.

Electromyographic (EMG) activity of the forearm was
recorded with a custom built amplifier, to ensure that the
forearm was not moved during motor imagination. Two EMG
electrodes were placed on the flexor digitorum profundus,
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while the ground EMG electrode was placed on the inner
wrist. The bipolar signal was filtered between 1 Hz and
1 kHz. The signal was full wave rectified and integrated with
a time constant of 100 ms.

Matlab and Simulink (TheMathWorks Inc., Massachuses-
tts, USA) were used to create and run the paradigm, while the
TOBI Signal Server ([9], www.tobi-project.org/download)
was used to acquire and distribute the signals (EEG and
EMG) to the Simulink model and to a second computer ded-
icated to monitoring the EEG/EMG signals quality. Finally,
an additional screen was used to display the paradigm to the
participant.

C. Experimental paradigm

Subjects were instructed to execute and imagine brisk
closing and opening sequences of the right hand (duration
about 1 s) in a cue-based paradigm. Two classes were dif-
ferentiated: single brisk closing and opening (class 1) versus
double brisk closing and opening (class 2). In case of class
2, subjects were asked to execute/imagine movements suc-
cessively and at a regular speed. No feedback was provided
during the trials. The screening session consisted of 8 runs,
40 trials each, for a total of 320 trials. Runs were separated
by a short break. The first run of the session was always
a motor execution task, while the 7 remaining runs were
motor imagery task. Each run consisted of 20 trials per class
in random order.

At the beginning of each trial, a fixation-cross appeared
on the computer screen. After 2 s, a cue appeared for 1.5 s
in form of a roman digit (”I” or ”II”, corresponding to class
1 and 2, respectively) and prompted the subject to execute
or imagine the related movement imagination sequence. At
second 7, the trial stopped and the fixation-cross disappeared,
leaving a blank screen. A short break, which duration was
comprised between 1.5 and 2.5 s, followed after each trial.

D. ERD Analysis

Event-related desynchronization (ERD) and event-related
synchronization (ERS) are defined as the percentage of band
power decrease (ERD) or band power increase (ERS) in
relation to a reference interval (in this study 0.5-1.5 s) [10].
To assess changes in the frequency domain for each class,
ERD/ERS maps for frequency bands between 4 and 40 Hz
were calculated, using overlapping frequency bands with 2
Hz bandwidth and 1 Hz step size [11]. The statistical signifi-
cance of the ERD/ERS values was determined by applying a
t-percentile bootstrap algorithm [12] with a significance level
of α = 0.01.

E. Statistics

For assessing statistically significant differences in the
physiological responses according to the different classes
the mean ERD/ERS values were calculated for frequency
bands between 4-40 Hz (4-6 Hz, 6-8 Hz, 8-10 Hz, 10-12 Hz,
12-16 Hz, 16-20 Hz, 20-24 Hz, 24-30 Hz, 30-40 Hz). The
ERD/ERS values of the channels covering the motor cortex
were merged to three regions of interest (ROI), with ROI

”left” consisting of C3 and the 8 surrounding channels, ROI
”central” consisting of Cz and the 8 surrounding channels
and ROI ”right” consisting of C4 and the eight surrounding
channels. In addition, the median ERD/ERS values for two
periods of the trial corresponding to the timing of the class
were calculated. For this purpose we looked at the EMG
time course of the first run, where the participants actually
performed the brisk movement and assessed the duration
of muscular activation of the single and the double brisk
movement. This resulted in two periods, t1, from second 2
to 4.5, and t2, from second 4.5 to 7.
For each frequency band a 2x2x3 ANOVA for repeated
measures with ERD/ERS values as dependent variable and
CLASS (single vs. double), TIME (t1 vs. t2) and ROI (left,
central, right) as within-subject factors was computed. When-
ever the sphericity assumption was violated Greenhouse-
Geisser corrected values were used for further analysis. In
case of statistically significant main factors or interactions a
Newman-Keuls posttest was performed.

F. Single-trial analysis

1) Synchronous offline analysis: The recorded EEG data
were filtered with common spatial patterns (CSP) [13] and
classified with Fisher’s linear discriminant analysis (LDA)
afterwards. The classification procedure can be written as:
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X = [x(t),x(t+ 1), . . . ,x(t+ T − 1)]

(2)

x(t) ∈ RC denotes the raw EEG signal at time t; C is
the number of EEG channels. {wj}Jj=1 ∈ RC×J is the set
of J spatial filters. The coefficients βj were calculated with
LDA.

In addition to existing classes (class 1, class 2), two
additional classes were introduced: “CSP1” and “CSP2”. All
samples between second 3 and 5 within a trial belonged to
“CSP1” (regardless of single or double brisk movements) and
all samples between second 0 and 2 within a trial belonged
to “CSP2”. Using these “CSP classes”, the CSP method as
described in [14] was used to calculate the spatial filters
wj . The EEG signals X were filtered with a band pass
(8 Hz – 30 Hz) and then J = 2 spatial filters were applied
(all corresponding to “CSP1”). Afterwards we estimated the
variance in equation (1) over a running time window of
length T = 1 s and obtained CSP features. Noteworthy, the
CSP method was used to enhance the signal–to–noise–ratio
and not to differentiate two spatial patterns. Subsequently,
we applied an LDA classifier on the CSP features using the
original classes class 1/class 2. We evaluated the classifica-
tion accuracy by performing a 10× 10 cross validation on a
trial-basis.

2) Asynchronous offline analysis: We developed an asyn-
chronous brisk movement classifier and applied it offline.
First, CSP features were extracted using the same CSP
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classes as the synchronous classifier. The used frequency
band ranged from 8 to 30 Hz, the variance was calculated
over 1 s. Then the CSP features were classified with an LDA
classifier. However, the LDA was utilized to differentiate the
control state vs. the non-control state (similar to the CSP).
Finally, single and double brisk movements were classified
using a temporal threshold. After a movement was detected,
a refractory time of 2 s was introduced. Summarizing, CSP
was used for enhancing the signal-to-noise ratio, the LDA
was used to find a threshold for detecting the control-state,
and a temporal threshold was used to differentiate one vs.
double brisk movements.

As thresholds were subject specific, we applied a genetic
algorithm to runs 2 to 5 to find them. After the training of
CSP and LDA on runs 2 to 5, the asynchronous classifier
was tested on runs 6 to 8. Here, true positives (TP), false
positives (FP) and false negatives (FN) were counted as
follows. First, a TP window was defined ranging from 4.5 s
to 7 s within a trial. The first movement detection within
this window was counted as TP if it corresponded to the
correct one or as FN if not or if no movement was detected
at all. All further detections within this window, as well as
all detections outside were counted as FP.

III. RESULTS

A. Statistics

The ANOVA revealed a significant threefold interaction
CLASS X TIME X ROI in the lower theta (4-6 Hz; F(2,18) =
4.31; p < .05) and the gamma band (30-40 Hz; F(2,18) =
4.51; p < .05). In the lower theta band, ROI left at t2,
there is an ERS for single brisk movements (M = 5.12;
SD = 8.75), whereas for double brisk movements, there
is still ERD (M = −3.47; SD = 15.85). In the gamma
band something similar could be observed, with ERS or
significantly weaker ERD for single brisk movements and
stronger ERD for double brisk movements, not only for ROI
left (single: M = 1.62; SD = 11.24; double: M = −9.26;
SD = 10.11), but also for ROI central (single: M = 0.11;
SD = 24.15; double: M = −5.01; SD = 6.35) and ROI
right (single: M = −2.63; SD = 9.64; double: M = −6.93;
SD = 4.35). In the frequency band 24-30 Hz the ANOVA
showed a significant main effect CLASS (F(1,9) = 8.96;
p < .05) with significantly lower ERD for single brisk
movements (M = −3.42; SD = 5.04) as compared to
double brisk movements (M = −9.40; SD = 9.61). In
addition to these significant effects a trend towards statistical
significance could be found for the interaction CLASS X
TIME in the upper theta (6-8 Hz; F(1,9) = 4.51; p = .08)
and the upper alpha band (10-12 Hz; F(1,9) = 3.67; p = .09),
pointing towards a possible difference for t2 with ERS
or weaker ERD for single brisk movement as compared
to stronger ERD for double brisk movements in this time
period. In Figure 1 exemplarily the ERD maps of one subject
are presented. In this case the difference in the occurence of
the short lasting ERD in the upper figure compared to the
long lasting ERD in the lower figure can be seen.
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Fig. 1. Time-frequency map for single (A) and double (B) brisk movement
for 30 channels. Orange coloured dots represent ERD, blue dots represent
ERS (indicated with dotted circles). The dashed lines enclose the reference
interval. The line at second 2 indicates the appearance of the cue.

B. Single-trial analysis

Results obtained from synchronous classification are pre-
sented in Figure 2 and Table I. Figure 2 shows classification
accuracies for each subject as well as the grand average.
Table I shows 90 % quantiles and maximum values of
classification accuracies over the interval from cue to end
of trial. Here the mean is 66.7±12.0 % (90 % quantile) and
69.7±12.7 % (maximum), respectively. Removing the results
from those subjects who showed no significant results (below
60 %) these values increase to 72.3±9.8,% (90 % quantile)
and 75.6±10.2 % (maximum), respectively.

TABLE I
SYNCHRONOUS OFFLINE ANALYSIS. 90 % QUANTILES AND MAXIMUM

VALUES OF CLASSIFICATION ACCURACIES OF 10 SUBJECTS.

subj s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
90 % 78 87 69 73 79 54 60 61 53 55
max % 81 92 73 76 81 56 62 64 55 57

The asynchronous classifier yields a mean true-positive-
rate (TPR) of 45.2±16.2 % over all subjects. Noteworthily,
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Fig. 2. Synchronous offline classification accuracies for all subjects; the
thicker black line shows the average classification accuracies of all subjects;
the dashed line shows the maximum and the 90 % quantile, respectively, of
the averaged classification accuracies.

one subject showed a good performance with a TPR of
70.8 %. EMG analysis showed that there was no movements
during brisk movement imagery.

IV. DISCUSSION

In the past, we have shown the successful implementations
of EEG-based brain-switches for neuroprosthetic control in
SCI patients. However, one prerequisite for doing so is that
the patients are able to generate characteristic brain patterns
by motor imagery which can be detected in the EEG [15],
[6]. Also an attempt of applying a pulse coded brain switch
to control hand and elbow function was presented recently
[16]. However, all these methods have in common that an
arbitrary type of MI was used, namely the one which was
the most reactive in the individual case.

In this work, we were focusing on a more natural, or
better to say, a more accepted type of control in the field of
rehabilitation. Specifically, we focused on brisk movement
imaginations of the hand. For the first time, we introduced a
control for hand and elbow function by applying brisk and
double brisk movement imagination, respectively. The idea
for this type of control was derived from prosthetic control,
where it is a common approach to use residual muscle
activation, either extensor or flexor muscles, to control the
opening, closing, pronation and suppination of the hand.

First results presented here, show that it is possible to
detect the two different patterns induced by either brisk
or double brisk MI although they origin in the same sen-
sorimotor area. Classical synchronous analysis has shown
promising results, though, for an asynchronous approach,
there are still open questions to be solved. Therefore, more
detailed analyses are necessary in the future as well as an
online study has to be carried out. As long as it is not easily
possible to decode the trajectories directly from the EEG

this new approach might be a good compromise for a basic
neuroprosthetic control.
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