
  

  

Abstract—With the advent of sophisticated prosthetic limbs, 
the challenge is now to develop and demonstrate optimal 
closed-loop control of the these limbs using neural 
measurements from single/multiple unit activity (SUA/MUA), 
electrocorticography (ECoG), local field potentials (LFP), scalp 
electroencephalography (EEG) or even electromyography 
(EMG) after targeted muscle reinnervation (TMR) in subjects 
with upper limb disarticulation. In this paper we propose 
design principles for developing a noninvasive EEG-based 
brain-machine interface (BMI) for dexterous control of a high 
degree-of-freedom, biologically realistic limb.  

I. INTRODUCTION 
lectromyography (EMG)-based systems have shown 
reasonably reliable 7-degrees-of-freedom (DOF) control 

of a prosthetic limb using EMG after TMR – a surgical 
technique pioneered by Dr. Kuiken involving the transfer of 
residual nerves in the amputated arm to the remaining 
muscle, which then provide EMG signals that correlate to 
the original nerve functions allowing a virtual or physical 
prosthetic arm to respond directly and more naturally to the 
brain signals [1]-[2]. Some critical challenges of this 
approach concern the stability of EMG recordings, 
interference from muscles controlling remaining joints, 
effects of tissue loading, control of fine dexterous 
movements, and the cognitive burden of operating the device 
[1]. Thus, it is desirable to develop noninvasive neural 
interfaces that directly use brain signals, such as scalp 
electroencephalography (EEG), to control fine dexterous 
movements. 

Most EEG-based brain-computer/machine interface 
(BCI/BMI) systems are based on (for a review, see [3]): 1) 
slow cortical potentials, including the so-called (low-
frequency) readiness potentials that appear prior to the onset 
of movement, commonly used for the control of spelling 
devices in locked-in patients; 2) event-related potentials that 
are large-scale, low-frequency changes observed in response 
to neural events or triggered by external stimuli, and have 
been used in spelling devices and for controlling 
wheelchairs; 3) sensorimotor rhythms, such as alpha and 
beta rhythms in the 8-24 Hz range, that have been used for 
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BCI cursor control (up to 3D) and other low degree-of-
freedom (DOF) robotic applications. These approaches 
usually require several months of training, lack robustness, 
do not seem to scale well to tasks requiring > 3 DOF, and/or 
are slow in their response outputs. Together with 
physiological and non-physiological sources of noise or 
artifacts, and because the scalp-skull interface is thought to 
act as a low-pass filter thereby limiting the range of 
frequencies that can be recorded with EEG, these factors 
may have contributed to the widespread perception that EEG 
is not a suitable signal for complex, natural, volitional 
BCI/BMI applications. Here, we propose new design 
principles for the development of EEG-based 
multifunctional neuroprosthetics that can overcome these 
perceived limitations of EEG as a source signal for neural 
interface applications. The challenge is to develop an EEG-
based BMI system that can control an upper limb prosthetic 
naturally and which functions and feels like a real limb [4]. 

II. DESIGN PRINCIPLES FOR EEG-BASED NEUROPROSTHETICS 

A. Design Principle I (Input Feature Space): Time-
Domain, Delta-Band, Amplitude-Modulated (AM) EEG 
Carries Decodable Movement Information 
 Which EEG signal component in the time or frequency 

domain carries the most information about natural dexterous 
movement? Many decoding or BCI/BMI studies based on 
ECoG recordings have generally focused in the 
identification of the optimal frequency band(s) for spectral-
power-based decoding [5]-[8]; with the underlying 
assumption that spatially-resolved gamma band frequencies 
are critical for movement decoding. However, recent studies 
have evaluated decoding from movement-related potentials 
(time-domain) and from spectral amplitude modulations 
(frequency-domain) in very low frequencies and in the high 
gamma band. Specifically, Ball et al. reported high decoding 
accuracy of arm movement direction based on amplitude 
modulation both in the delta band (<2 Hz) and in the high 
gamma band (52–128 Hz), yielding considerably higher 
decoding accuracy than the alpha, beta and low gamma 
bands [5]. Ince et al. examined decoding of movement target 
direction based on SUA and LFP signals, and reported that 
1) the decoding accuracies from simultaneously recorded 
SUA and LFP signals were similar; 2) directional 
information varied with the LFP frequency sub-band, being 
greater in low (0.3–4 Hz) and high (48–200 Hz) frequency 
bands than in intermediate bands. They attributed the high 
decoding accuracy from LFP signals to the spatial 
organization of the LFP signals over the recorded areas (M1 
and PMd) [9]. Zhuang et al. showed decoding of 3D reach-
to-grasp movements from LFP signals based on delta and 
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gamma band information [10]. Acharya et al. found a 
median decoding accuracy of r = 0.51 for finger movements 
in a slow grasping task based on moving-average filtering 
(time constant = 2s) from ECoG [11]. Overall, it seems that 
detailed information about movement is carried in amplitude 
modulations of the smoothed ECoG or LFP signals in the 
delta (0.1-4 Hz) bands originating from a small group of 
neurons in specific and detailed brain regions. Although 
EEG recordings represent the activity from large and 
separated groups of neurons, it can be argued that these 
amplitude modulations can also be recorded from EEG: a) 
decoding accuracies from ECoG, LFP and EEG using time-
domain amplitude modulations are comparable, b) low-
frequency, delta band signals are unlikely to be significantly 
affected by the conductivity of the brain tissues, and c) these 
low frequencies are of course easily recorded using EEG and 
also less susceptible to artifactual components. In this 
regard, it has been shown that EMG and ocular artifacts do 
generally occur mainly at frequencies higher than 8 Hz, 
which is 2 times higher than the upper frequency cutoff of 4 
Hz in the delta band [12]. Indeed, we have showed that the 
relevant input feature space for reconstructing 
multidimensional natural movement lies in the time-domain 
modulations of the smoothed (< 4 Hz) amplitudes of high-
density scalp EEG, which allow us to selectively read out 
brain activity patterns naturally correlated with movement 
intentions [13]-[17]. 

 

B. Design Principle II (Decoder Calibration): 
Calibration Based on Observed Movement 
One method to train a neural decoder for BMI 

applications that does not require actual movement of the 
user is to use movement observation as a teaching signal 
during kinesthetic visuomotor imagery. This is essential in 
the case of a person with an upper limb disarticulation, who 
cannot move his/her arm for purposes of calibrating the 
decoder. As in [18], we asked subjects to imagine manually 
tracking a screen cursor that moved in two dimensions on 
the computer screen [16]. The movements of the computer-
controlled cursor were generated by replaying a 10-min 
recording of a pilot subject’s brain-controlled cursor 
movements from one of his practice runs (this pilot subject 
did not participate as one of the five subjects in our study 
[16]). EEG data acquisition and cursor movement were 
synchronized (i.e., aligned at the time of cursor movement 
onset). Our decoding procedure [11] was subsequently 
executed to find the decoder weights that best mapped 34 
EEG signals to observed horizontal and vertical cursor 
velocities; thus the decoder (a Wiener filter with memory – 
signals up to 100 ms in the past were used as inputs to the 
decoder) was created (offline) to map EEG signals to the 
observed cursor movements. The accuracy of the decoder 
(Pearson’s r), that is, the degree of correlation between the 
reconstructed (i.e., inferred) cursor trajectories and the actual 
cursor movements is shown in Figure 1. Examples of 
reconstructed and measured cursor movement velocities 

along the X and Y-axes are shown in Figure 2. 

 
Fig. 1. EEG decoding accuracy of observed cursor velocity. Mean ± 
standard error of the decoding accuracies (r values) across cross-validation 
folds (n = 10) for each subject for x (black) and y (white) cursor velocities. 
Adapted from [16], with permission. 

 
Fig. 2. 
Superimposed 
reconstructed 
velocity profiles 
(red) and actual 
velocity profiles 
(black) matched 
well (data from 
Subject 1). 
Adapted from 
[16], with 
permission. 
 

 Importantly, analysis of the lags of the decoder most 
relevant to prediction of observed cursor movement 
indicated the presence of planning activity that peaked at 50 
ms in the past, therefore excluding the decoding of passive 
viewing as an explanation and suggesting predictive 
decoding informed by forward models [19]. 

In the case of multifunctional prosthetic limbs, calibration 
based on observed movement could be performed by 
initially having an experimenter or computer program drive 
the prosthetic limb independent of the influence from the 
patient’s neural signals. The upper limb amputee would be 
asked to imagine performing a function (e.g., reach-to-grasp 
movement) while ‘wearing’ the upper limb prosthetic. While 
the user tries to perform the dexterous gesture, the 
experimenter or computer program would command the 
prosthetic limb to perform the predefined action(s). The 
brain activity from various electrodes would then be 
measured during the entire reach-to-grasp gestures as the 
user watches the prosthetic limb move as if he/she is 
performing the actions. Thus, the visual feedback acts to 
reinforce the kinesthetic imagery generated by the user. Of 
course, the gestures would be repeated together with other 
gestures to maximize generalization of the decoder. 

C. Design Principle III (Internal Model): Fast Attainment 
of Brain Control with EEG Signals 
Linking physical response to neural actions is how people 
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learn. This is similar to the way one learns to play a new 
videogame or use a novel tool; through practice the brain 
builds an internal model (or representation) of how the body 
interacts with the prosthetic limb, including the neural 
interface itself. As the neural activity is correlated with the 
behavior, brain control becomes intuitive and training time is 
reduced [16], [20]. Indeed, cortical control of 
neuroprosthetic systems is known to require adaptation in 
neural networks involved in motor planning and motor 
execution [21]-[23]. Although the long-term use of a BMI 
device has been shown to result in the formation of a stable, 
addressable and robust cortical map for 2D prosthetic 
control [21], little is known about the nature of the cortical 
representation for prosthetic control of dexterous hand 
movements at the macro-scale of scalp EEG. Our work 
suggests a large, but sparse network engaging frontal, 
temporal and parietal scalp areas that represents angular 
kinematics of dexterous fine finger gestures [17]. 

Returning to our example of decoder calibration with 
observed cursor movement, the linear decoder can be used to 
decode activity and drive a ‘neural cursor’ in 2D space in a 
closed-loop BCI system. For example, we have recently 
shown in [16] that following a ~20 min practice phase with 
the neural cursor with no task, subjects moved a cursor with 
their EEG signals to acquire targets that appeared one at a 
time pseudo-randomly at the left, top, right, or bottom of a 
2D workspace. Four 10-minute runs of target acquisition 
were then performed with a 1-minute rest interval between 
runs. The overall means (SE) of the hit rate and movement 
time (MT) were 73 ± 4% and 5.40 ± 0.27 s. To our 
knowledge, this is the first noninvasive EEG-based BCI 
study to employ continuous decoding of imagined/observed 
natural movement, in which users can achieve 2D brain 
cursor control in a single session [16]. Previous work in 
EEG-based BCI systems for cursor control required subjects 
to overcome an initial disconnect between intended 
movement and neural activity in order to learn how to 
modulate their sensorimotor rhythms to control the cursor. 
These studies based on sensorimotor rhythms required 
weeks to months of training before levels of performance 
were deemed sufficient for reporting [24]. We suggest that 
the combination of using a decoder based on 
imagined/observed natural movement (as opposed to 
neurofeedback training of sensorimotor rhythms), in 
conjunction with the capability of the brain to update 
internal models, reduced the subject training requirements of 
our target acquisition phase to only a single brief practice 
session, and allowed for performance improvement during a 
single session. An important aspect of decoder design is the 
analysis of the "long-term stability". Most current EEG-
based systems (and even invasive systems) require 
periodical recalibration, which is due to the variability and 
deterioration of the signals across time due to changes in 
electrode impedance, EEG electrode cap repositioning or 
movement, changing environments, or even changes in 
neural activity due to normal aging. 

D. Design Principle IV (Injured Brain): Calibration and 
Closed-Loop BCI after Brain Reorganization 
With the exception of a few studies in humans involving 

spinal cord injury, epilepsy and other clinical populations 
(e.g., [6], [8], [11], [18], [24]), most decoding and BCI/BMI 
studies are based on brain signals acquired from healthy 
brains. Since the completion of the 2D BCI study described 
in [16] and summarized in the previous sections, we have 
tested an additional subject with left wrist disarticulation 
(aged 55 y, post-amputation time = 54 years, the subject uses 
a cosmetic hand). From the decoder calibration phase using 
imagined/observed cursor movement, the mean (SE) r values 
for x and y were 0.45 (0.08) and 0.39 (0.08), respectively, 
for this subject. The median MT was 5.33 s, and the hit rate 
was 85%. We chose the best (mirrored, given his left hand 
amputation) 34 sensors we found in our previous study [13] 
for decoding and BCI control purposes. However, non-
mirrored electrodes produced similar decoding accuracies as 
27 out of the 34 sensors were shared by the two sets of 
sensors. Figure 3 depicts the average spatial trajectories to 
the four peripheral targets during BCI operation during a 
single BCI session. 

    Fig. 3. Mean brain-controlled cursor paths in a 
subject with wrist disarticulation. Each colored 

path is the mean of the length-normalized trials 
for a single direction (left, top, right, or bottom) 
across all trials of all runs for a subject. Trials in 
which the subject did not acquire the target 
within 15 s (time-out) were excluded from 
analysis. 
 

In regard to other BCI/BMI studies 
with clinical populations, Hochberg et al. reported results for 
a tetraplegic human (MN) implanted with a 96-
microelectrode array in M1 [18]. Subject MN was able to 
achieve, in the course of 57 consecutive sessions over 9 
months, BCI control of 2D cursor movement that MN used 
to open and close email, operate devices such as a television 
and open and close a prosthetic hand to grasp and transport 
an object from one location to another.  In particular, subject 
MN was able to achieve 2D target hit rates of 73-95% (mean 
motion completion time ~ 2.51 s) over 6 sessions. Recently, 
McFarland et al. used an EEG sensorimotor rhythm-based 
BCI to demonstrate 3D BCI cursor control in a subject (User 
2) with spinal cord injury (T7) confined to a wheelchair [25]. 
User 2 achieved a mean correlation of the control signals, for 
vertical, horizontal and depth dimensions, of r2=0.29, 0.37, 
and 0.16, respectively, with each signal correlated 
exclusively or most strongly with its own dimension of 
target location. This performance was obtained over 26 
sessions (total of 10.4 h with an additional 367 h of BCI 
experience in lower dimensional control tasks).  

Importantly, the evaluation and validation of non-invasive 
neuroprosthetics should be done in realistic situations (e.g. 
reaching operations, activities of daily living, grasping & 
multi-tasking), preferably with both healthy and impaired 
subjects to demonstrate the correct operation of the BMI 
system. The evaluation step should include different 
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validation methodologies; including ruling out the potential 
influence of eye movements and muscle activity [13], [16], 
as well as assessment scales (according to the type 
impairment of the potential users) to study the degree to 
which the user is improving or recovering lost movements. 
This is important to demonstrate that the system is not only 
able to reconstruct real movements, but the user is benefiting 
from the device. Another critical design issue is need for 
asynchronous operation of EEG-based neuroprosthetics – an 
important yet unresolved limitation with most current BMI 
systems. In order to construct BMI's where the users can 
perform natural movements, no explicit cues 
(synchronization signals) must be provided to mark the onset 
(or the end) of the movements.  

III. CONCLUSION 
Few BMI studies have been done with prosthetic limbs. 

Carmena et al. showed brain control of 3-DOF reach-to-
grasp movements using a 6-DOF robotic arm equipped with 
a 1-DOF gripper with the robotic arm constrained to planar 
movements in 2D (i.e., in the X-Y coordinates) lasting ~ 
2.5s [26]. Over a period of 14 sessions, accuracies (r2) were 
achieved of 0.36 (2D endpoint velocity) and 0.68 (force). 
Feedback of the robot state was provided via a visualization 
apparatus that displayed end-point position and gripper force 
as a screen cursor movement and size, respectively. Velliste 
et al. showed 4-DOF BMI control of self-feeding 
movements lasting ~3-5s (monkey A) that achieved a 
success rate of 61% over a period of 2 daily sessions (a 
second monkey B achieved 76% over 13 days) [22]. These 
studies were however done in nonhuman primates. Given 
that noninvasive EEG does not add any risk to the BMI user, 
we expect that the design principles summarized in this 
paper will lead to EEG-based BMI control of 
multifunctional prosthetic limbs in the near future such as 
the 22-DOF DARPA Modular Prosthetic Limb (MPL) – 
with the look, weight, strength, dexterity, natural movement, 
and toughness of an intact arm. 
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