
  

  

Abstract—Electromyography (EMG) signals are 
commonly recorded using the Ag/AgCl gel electrodes in 
myoelectric prosthetic control. While a gelled electrode 
may provide high-quality EMG recordings, it is 
inconvenient in clinical application of a myoelectric 
prosthesis. A novel type of signal sensors-textile 
electrodes should be ideal in control of myoelectric 
prostheses. However, it is unknown whether the 
performance of textile electrodes is comparable to 
commonly used electrodes in classifying arm movements. 
In this study, the custom-made bipolar textile electrodes 
were fabricated using copper-based nickel-plated 
conductive fabric and were used to record EMG signals. 
The performance of EMG signals recorded with textile 
electrodes in identifying nine arm and hand movements 
were investigated. Our pilot results showed that the 
average classification accuracy across six able-bodied 
subjects was 94.05% when using textile electrodes and 
94.26% when using conventional electrodes, with no 
significant difference between the two types of electrodes 
(p=0.81). The pilot results suggest that the textile 
electrodes could achieve similar performance in 
classifying arm movements in control of myoelectric 
prostheses as the gelled metal electrodes. 

I. INTRODUCTION 
URRENTLY, most commercially available motorized 

artificial arms are controlled with myoelectric signals 
recorded from remaining muscles on an amputated arm. This 
control strategy requires a pair of remaining 
agonist-antagonist muscles for control of a degree of freedom 
(DOF). As a result, given a limited number of muscles 
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available after amputations, the current prosthesis control 
method can not control a prosthesis with multiple DOFs. For 
example, for a transhumeral amputee, the remaining arm 
muscles only have parts of biceps and triceps which can serve 
as EMG signal sites to control prosthetic movements. When 
all the three joint DOFs of elbow, wrist, and hand are 
required, the user must trigger a “mode switch” such as 
making a co-contraction of the agonist-antagonist muscle pair 
to sequentially select which of these joints is desired to be 
actuated. Obviously, switching to different modes is slow and 
cumbersome. Moreover, using a same agonist-antagonist 
muscle pair to control different joint movements is 
non-intuitive and very difficult for users to learn the 
contraction/co-contraction of these muscles, because the 
applicable residual muscles may not be physiologically 
associated with the joint DOFs (such as using the residual 
biceps and triceps muscles to control hand opening and 
closing).  

A significant improvement over the conventional method 
is the use of EMG pattern recognition based prosthesis 
control [1-15], which is grounded on the assumption that 
EMG patterns contain information about the desired 
movements of the residual limbs [3]. Using a pattern 
classification technique, the distinguishable characteristics of 
EMG patterns can be used to identify a variety of different 
intended movements which are sent to a prosthesis controller 
to implement the corresponding movements; this does not 
require independent muscle control sites for each controlled 
motion. Thus, this control approach may allow users to 
control a multifunction prosthesis intuitively and more easily. 

In the previous studies of myoelectric prosthesis control, 
the commonly used EMG sensors are metal electrodes, which 
can be categorized into two types, wet and dry electrodes. A 
wet electrode uses electrode gel to improve the skin-electrode 
coupling property for high-quality signal acquisition, but it 
may have several disadvantages in clinical application of a 
myoelectric prosthesis. The electrode gel tends to dry out 
over time, causing the change of skin-electrode contact 
impedance and it is inconvenience to put the gel on each 
electrode in the socket donning of a prosthesis everyday. In 
addition, adhering wet electrodes to skin may cause skin 
irritation and allergies. A metal dry electrode does not require 
the use of electrode gel, but its poor contact between the dry 
electrode and skin causes large contact resistance and signal 
recordings are much more prone to motion artifacts and noise. 
Recently, textile electrodes have been attracting more and 
more researcher’s attention and are expected to become an 
alternative to the metal electrodes. 
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It is well know that a textile electrode has a good 
performance in ventilation, flexibility, folding, bonding and 
do not need any electrode gel. Furthermore, fabric electrodes 
can easily attach to clothes and be conveniently and 
comfortably cleaned, re-use, and long-term using without 
adverse reaction [16-18]. These properties make textile 
electrodes be the ideal sensors for EMG signal recordings in 
control of a myoelectric prosthesis in clinical applications. 
However, it is unknown if the performance of textile 
electrodes in control of myoelectric prostheses is comparable 
to commonly used metal wet electrodes. In this study, we 
used the commercial conductive woven to make textile 
electrodes for EMG signal recordings and investigated the 
performance of EMG signals in control of multifunction 
prostheses. The performance of the textile-electrode EMG 
recordings compared with that of the wet-electrode EMG 
recordings, which determines if it is possible to use a textile 
electrode to replace a wet electrode in control of myoelectric 
prostheses. 
 

II. METHODS 

A. Textile Electrodes 
The textile electrodes were fabricated using copper-based 

nickel-plated conductive fabric in the study, as shown in Fig. 
1. The recording size of electrodes was 2 × 1.4 cm and two 
electrodes were integrated together to form a differential 
bipolar structure (Fig.1 (a)). The center-to-center distance of 
the paired electrodes is around 2 cm. The textile electrodes 
were mounted on a strap that was made by the rubber and 
nylon materials, as shown in Fig. 1(b). 

 

B. Subject and EMG Data Acquisition 
Six able-bodied male subjects, designated as AB01-AB06, 

who were free from any neurological and muscle pathology, 
recruited for the participation of this pilot study. The subjects 
aged from 20 to 30 years old. The protocol of this study was 
approved by Shenzhen Institutes of Advanced Technology 
Institutional Review Board. All subjects were given the 
written informed consent and provided permissions for 
publication of photographs for scientific and educational 
purposes. 

EMG data acquisition experiment was conducted twice for 
each subject. In first experiment, EMG data were acquired 

using textile electrodes and the location of each electrode was 
marked and photographed after data acquisition. Then the 
subject took a rest for about half hour and then eight 
conventional metal electrodes (BagnoliTM, Delsys Inc.) were 
placed on the same locations as the textile electrodes to 
acquire EMG data again. To avoid any bias for use of the two 
types of electrodes, in second experiment, the metal 
electrodes were used first and then the textile electrodes for 
EMG acquisition. The time interval between the two 
experiments was one to two days, depending on the subjects 
available.  

 The eight custom-made textile bipolar electrodes were 
mounted on three straps (Strap A, B, and C). Strap A had two 
electrodes and placed on the biceps and triceps, Strap B had 
four electrodes and placed around on the proximal forearm 
(brachioradialis muscle, flexor carpi radialis muscle, flexor 
carpi ulnaris, and extensor digitorum communis), and Strap C 
had two electrodes and placed on the wrist (Pronator 
Quadratus and dorsal wrist), on the dominated arms, 
respectively. A large circular electrode was placed on the 
bony area of elbow in the tested arm as a ground. EMG 
signals were amplified and band-pass filtered (5-500 Hz), and 
then sampled at a rate of 1 kHz. EMG data were acquired with 
a custom data acquisition and processing system for the 
textile electrodes.  A commercial EMG acquisition system 
(BagnoliTM, Delsys Inc.) was applied to collect EMG data 
when using the conventional metal electrodes. 

Each experiment included eight classes of arm and hand 
movements plus a “no movement” class that are the most 
commonly used movements in our daily activities. The eight 
movements were two elbow motion classes (elbow flexion 
and extension), four wrist motion classes (wrist flexion and 
extension and wrist pronation and supination), and two hand 
motion classes (hand open and close), as illustrated in Fig. 3. 
During experiment, subjects were asked to watch a video 
demonstration of each class of movements and to perform the 
movement in synchrony with the video. Every experimental 
trial contained ten repetitions of a motion class. For each 
repetition, the subjects were asked to exert a comfortable 
level of contraction at a medium force, to hold the contraction 
for approximately 5 seconds, and then to relax for the next 5 
seconds. The ten repetitions of each movement totally 
produced 50-second active EMG recordings. To avoid 
muscle and mental fatigue, the subjects were allowed to take a 
rest of 3 to 5 minutes between trials. 
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Fig. 1. Custom-made textile electrodes. (a) A bipolar electrode. (b) Two 
bipolar electrodes mounted on a strap. 

CH1

CH2

CH3-CH6 CH7-CH8

CH1

CH2

CH3-CH6 CH7-CH8

 
Fig. 2. Schematic diagram of electrode placement on able-bodied subject 
arm. 
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C. Movement Classification 
EMG pattern-recognition-based movement classification 

was performed on analysis windows. For each movement, 
50-second active EMG recordings were segmented into a 
series of analysis windows with a time length of 150 ms and a 
time increment of 100 ms. Commonly used four time-domain 
features (mean absolute value, number of zero crossings, 
waveform length and number of slope sign changes) [3,7,9] 
were extracted from each analysis window. For each analysis 
window, a feature set is extracted on each of all the recording 
channels, producing a 4-dimensional feature vector. After 
concatenating the feature sets of all the channels, the entire 
EMG feature matrix (4×8×N, where N is the number of 
analysis windows). A linear discriminant analysis (LDA) was 
used to build a classifier for classification of different 
movements. EMG features from the first half of EMG 
recordings were used as the training data set to train a linear 
discriminant analysis (LDA) classifier for the nine motion 
classes, and EMG features from the second half of EMG 
recordings were used as the testing data set to evaluate the 
performance of EMG pattern recognition algorithm for the 
classification of the nine motion classes. The performance of 
the trained classifier in identifying a movement was measured 
by the classification accuracy, which is defined as: 

 
    100%         (1)
    

Number of correctly classified samples
Total number of testing samples

×
 

 
The classification accuracies were averaged over all nine 

movements to calculate the overall classification accuracy for 
each subject. Paired t-test was used to asses the statistic 
difference of classification accuracy between textile 
electrodes and gelled metal electrodes. 

 

III. RESULTS 
The performance comparison of two types of electrodes in 

identifying the different arm movements were measured by 
the classification accuracy. Table 1 summarizes the overall 
classification accuracy in identifying nine movements in six 

subjects when using EMG textile electrodes and conventional 
gelled metal electrodes, respectively. In two tests of textile 

electrodes, the classification accuracies across subjects 
showed consistency with an average accuracy of 
94.45±2.10% in the first test and 93.65±2.59 in the second 
test. The classification accuracies in two tests of conventional 
metal electrodes also were similar with an average accuracy 
of 93.92±1.77% and 94.60±2.20%, respectively. For each 
subject, the textile electrodes showed similar performance in 
classifying the nine arm and hand movements as the 
conventional electrodes. The average classification accuracy 
across six subjects over two tests was 94.05%±2.29% when 
using textile electrodes and 94.26%±1.94% when using 
conventional electrodes, with no significant difference 
between the two types of electrodes (p=0.81). 
 

IV. DISCUSSIONS 
The performance comparison of the gelled metal electrodes 

and textile electrodes in identifying the different arm 
movements was performed in the pilot study. Compared to 
the commonly used gelled metal electrodes, the textile 
electrodes have many properties to make them the ideal 
sensors for real-time EMG signal recordings in clinical 
application of myoelectric prostheses. Mounting a textile 
electrode to cloth is convenient for user’s socket donning 
everyday and comfortable for long-time wearing without any 
adverse reaction. It is worthy noting that as a kind of dry 
electrodes, the textile electrodes are prone to causing more 
motion artifacts and noise in EMG recordings due to the poor 
contact between electrode and skin. It is unknown if the 
textile electrodes without the use of electrode gel also could 
capture enough EMG information for high classification 
accuracy in identifying different arm and hand movements, as 
gelled metal electrodes do. Therefore, it is necessary to 
investigate the usability of the textile electrodes in EMG 
recordings for control of multifunction myoelectric 
prostheses.  

The results of the present pilot study in six able-bodied 
subjects showed that using a LDA classifier and four 
time-domain features, the EMG data recorded using textile 
electrodes could produce high accuracy (about 94%) for the 
classification of different arm movements, which was 
comparable with that of the conventional gelled electrodes. 
This finding suggests that the textile electrodes can be used in 
EMG recordings for control of myoelectric motorized 
prostheses instead of the conventional metal electrodes. Note 
that this study used classification accuracy to evaluate the 
performance of pattern recognition algorithms. Classification 
accuracy is the ability of the algorithm to appropriately 
recognize the desired movements during each time window 
(100 ms, here) while the subject holds different movements 
for several seconds. This accuracy is calculated by 
post-processing EMG recordings and is not a true measure of 
real-time function of a myoelectric prosthesis. Recently, we 
have proposed three real-time performance metrics to assess 
important real-time control parameters of multifunctional 
myoelectric prostheses [15, 19]. In the future, using the three 
performance metrics we will conduct more studies in both 

TABLE 1 

OVERALL CLASSIFICATION ACCURACY (%) IN IDENTIFYING 
NINE MOVEMENTS WHEN USING TWO TYPES OF EMG 
ELECTRODES, RESPECTIVELY 

Subject Textile electrode Metal electrode 
Test1 Test2 Test1 Test1 

AB01 94.77 92.15 92.17 94.44 
AB02 97.45 97.55 94.87 95.88 
AB03 95.69 95.27 95.56 97.79 
AB04 91.76 90.01 91.21 92.08 
AB05 94.59 93.16 94.97 92.21 
AB06 92.41 93.74 94.72 95.19 

Average 94.45±2.10 93.65±2.59 93.92±1.77 94.60±2.20 
Average 94.05±2.29 94.26±1.94 
p-value 0.81 
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able-bodied subjects and patients with limb amputations to 
further explore the real-time control performance of the EMG 
recordings with textile electrodes in identifying different 
upper-limb movements. 
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