
  

  

Abstract—Extracting physiological signals to control 
external devices such as prosthetics is a field of research that 
offers great hope for patients suffering from disabilities.  In this 
paper, a novel source signal extraction algorithm, based on the 
source localization method Champagne, is presented. The 
algorithm constructs spatial filters that not only maximizes the 
signal to noise ratio (SNR > 13dB) of the source activities but 
also minimizes the cross-talk interference between the 
sources ࢍሺ ሻሻ࢙ࢋࢉ࢛࢙࢘ ࢋࢉࢋ࢘ࢋࢌ࢘ࢋ࢚ሺࡼሻ࢚࢙ࢋ࢘ࢋ࢚ ࢌ ࢋࢉ࢛࢙࢘ሺࡼ     .ܤ݀ 14

I. INTRODUCTION 
Research into the extraction of physiological source signals 
from human subjects to control external devices offers 
numerous possibilities to improve the lives of disabled 
patients.  In this paper, we propose an algorithm for 
extracting source signals from the peripheral nerve recorded 
with Flat Interface Nerve Electrodes (FINE).  Recordings 
from the peripheral nerve offer several advantages over 
brain signals: (a) the functional anatomy of the peripheral 
nerves are known and is considerably more structured and 
simpler.  This can lead to less interferences and more stable 
source signals. (b) The physiological functions of the 
individual nerves are clearly understood, which facilitates 
the generation of controlled signals by human subjects.  (c) 
The procedures are less invasive compared to ECoG and 
intracranial electrode placement surgeries but can acquire 
better source signals compared to surface EEG. 
Our proposed algorithm is based on the Bayesian techniques 
described in [1, 2] called Champagne. The algorithm utilizes 
a novel strategy to construct spatial filters that not only 
maximize the SNR of the individual source signals but also 
minimize the cross-talk between the source signals.  This is a 
crucial aspect of source signal extraction for control since 
cross-talk amongst sources are just as debilitating as noises 
in the system.  In the following sections, we will first detail 
the acute in-vivo experimental setup used to generate the 
biological source signals, then the details of the proposed 
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algorithm is given and finally the algorithm is implemented 
and evaluated with physiological signals.                                                    

II. METHODS 
If we record a segment of nerve activity ܻ, with the number 
of time points length ܰ, from ܭ ൌ 16 electrode contacts 
א ܻ)  Թ௫ே), then it is the objective of this project to find a 
set of spatial filters ܨ א Թ that can extract the individual 
source signals ܺ from the recorded signals ܻ i.e.  
 ݆ܺ ൌ ,ܻ݆ܨ ݆ ൌ 1:  (1) ܺܦ
 .is the number of independent sources ܺܦ 

A. Data Collection 
In this section we detail the methods for the acquisition of ܻ.  
New Zealand White Rabbits are anesthetized with 20-50 
mg/kg IM ketamine and 5 mg/kg IV diazepam and 
maintained with 60 mg/kg IV alpha-chloralose (followed by 
one quarter dose every 2 hours or as needed) and .02 mg/kg 
IM buprenex.  All protocols are approved by the Case 
Western Reserve University IACUC.  Recordings are made 
from a novel 16-channel tripolar FINE placed on the sciatic 
trunk near the popliteal fossa.  The Fine offers better 
recording selectivity by reshaping the geometry of the nerve 
[3, 4].  The signals are AC coupled, amplified, multiplexed 
and low-pass filtered at 5 kHz by an RHA1016 preamplifier 
chip (Intan Technologies, Utah). A National Intruments data 
acquisition card is used to perform A-to-D conversion and 
sampling at 15 kHz/channel. Tripolar stimulating FINEs are 
placed on the Tibial and Peroneal branches of the Sciatic 
nerve, distal to the recording cuff.  130Hz sinusoidal 
electrical stimulations are separately applied to each 
individual nerve branch to simulate source activities, so ܺܦ 
= 2.  Sinusoids are used for easy artifact removal.  Recorded 
signals are post-processed using an 800Hz – 3 kHz band-
pass filter in order to reduce any non-essential EMG and 
stimulation artifacts.  The resultant evoked nerve activities 
are then used as inputs into the proposed algorithm where 
spatial filters are constructed for each source 
(Peroneal|Tibial).   

B. Spatial Filter Construction 
Based on Champagne, the problem of extracting the 
individual source activities from the measured sciatic nerve 
signals ܻ, can be modeled as 
 ܻ ൌ ܵܮ  ݁ (2) 
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where ܵ א  Թெ௫ே are the N time point activities of the M 
pixels within the cross section of the FINE finite element 
model.  Each pixel can be seen as a potential source that 
have influences on the ܭ FINE contacts described by the 
lead field matrix ܮ א  Թ௫ெ.  The various noise and 
interferences that exist within the system are described by e.  
Detailed explanation of the lead field matrix L can be found 
in [5].  In short, a rectangular finite element model of the 
FINE positioned over an empty epineurium enclosing a 
homogeneous volume conductor is created, Fig. 1a. 
a 

b 

 
Fig 1. (a) The finite element model of the FINE electrode measuring 
5mm by 1.5mm and divided into 208 by 82 pixels [5]. (b) The pixel-
sensitivity described by the lead field matrix L for electrodes 1, 6, 11 
and 16. 

The FINE, measuring 5mm by 1.5mm, consists of 16 
contacts with contacts 1 to 8 arranged from top left to top 
right and contacts 9 to 16 from bottom left to bottom right.  
The cross section of the FINE is divided into 208 by 82 
pixels, which leads to M = 17056.  In Fig. 1b, the 
sensitivities of the four contacts (1, 5, 11 and 16) to the M 
pixels are plotted.  
To estimate the source locations we first introduce the 
following likelihood model based on (2) 
ሺܻ|ܵሻ  ן ݔ݁ ൬െ 12 ԡܻ െ ԡଶܵܮ ൰ (3) 

 
where ԡܳԡ ൌ ඥ݁ܿܽݎݐሾ்ܳିܥଵܳሿ.  ܥ is an unknown noise 
covariance matrix that is estimated later.  The sources ܵ are 
modeled as independent zero mean Gaussian distributions 
with covariance ܥௌ for ܵ 
ሺ  ܵሻ ൌ ࣨሺ ܵ| 0,  ௌሻ (4)ܥ
 
where ݊ ൌ 1: ܰ.  We also make the assumption that the 
sources are independent in time, leading to the source prior 
ௌሻܥ|ሺܵ  ן ݔ݁ ൬െ 12 ௌିܥሾ்ܵ݁ܿܽݎݐ ଵܵሿ൰ (5) 

 

ௌܥ ௌ is a diagonal matrix with the covarianceܥ  for each 
pixel ܵ  ሺ݅ ൌ 1:  ሻ located along the diagonal.  Theܯ
approximation of ܥௌ infers the pixel locations where the 
sources most likely reside.  When this approximation is 
complete, spatial filters ݆ܨ for each of the two sources ܵ ൌ ,ܻܨ ܨ א Թ can be constructed by utilizing the 
expectation of ܵ  
ሺௌ|,ೄሻܧ  ൌ ܥሺ்ܮௌܥ   ሻିଵ்ܻܮௌܥܮ
݆ܨ  ൌ ݁ܥሺܶܮ݆,ܵܥ   ሻെ1ܶܮ݆,ܵܥܮ

(6) 

 
here j points to the two sources Peroneal|Tibial, and ܥௌ, is 
the pixel covariance matrix obtained for each source.  The 
learned solution of ܥௌ should maximize 
ௌሻܥ|ሺܻ  ൌ න  ௌሻ݀ܵ (7)ܥ|ሺܵሺܻ|ܵሻ

 
which reduces to the minimization of the cost function 
௦ሻܥሺܮ  ൌ ாିܥܥሾ݁ܿܽݎݐ ଵሿ  log ሺ|ܥா|ሻ  ܥா ൌ ܥ  ܥ and ்ܮௌܥܮ ൌ ݀௧ି ଵ்ܻܻ  

(8) 

 
This cost function balances the differences between the 
learned covariance model ܥா and the empirical data 
covariance ܥ through the term ݁ܿܽݎݐሾܥܥாି ଵሿ against the 
complexity of the solution log ሺ|ܥா|ሻ.  Pixels that are not 
learned sources have ܥௌ values approaching zero.  Details of 
the update rules for iterating to a ܥௌ solution can be found in 
[2].   
The last piece of the puzzle left is the approximation of ܥ.  
The procedure for the determination of ܥ is described in 
[1].  Briefly, the nerve recordings ܻ are modeled as a 
combination of source signals ܺ, interference signals ܷ and 
random noise ܸ.  
 ܻ ൌ ܺܣ  ܷܤ  ܸ (9) 
 
The source and interference signals are assumed to be 
independent Gaussian distributions with zero mean and unit 
precision.  The random noise term ܸ is described by a 
diagonal precision matrix ܥ.  Given an initial choice of the 
number of sources and interferences to be learned, the 
algorithm utilizes variational Bayes expectation 
maximization to learn the set of model parameters that best 
fit the data covariance matrix ܥ by 
ܻܥ  ൎ ܶܣܣ  ܶܤܤ   െܸ1 (10)ܥ
 
where the learned interference and noise parameters are used 
to compute ܥ. 
ܥ  ൌ ்ܤܤ  ିܥ ଵ (11) 
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With the approximation of ܥ complete,  ܥௌ can be learned 
and spatial filters constructed for each source. While the 
spatial filters constructed this way maximize the SNR for 
each source, they do not take into account the cross-talk 
between the sources.  To minimize cross-talk, we propose a 
novel strategy.  For each source ܺ݅, ݅ ൌ 1:  instead of ,ܺܦ
(11), we use the definition below to compute the 
corresponding noise|interference parameter ܥ, as  
,ܥ   ൌ ்ܤܤ   ,ିଵܥ   ்ೣܣܣ

ୀଵ,ஷ  (12) 

 
By incorporating this additional term into the definition of ܥ, the algorithm effectively treats sources, that are not the 
target of the current spatial filter, as interferences.  This 
modification leads to spatial filter solutions that both 
maximize SNR and minimize cross-talk. 

C. Implementation 
The proposed algorithm requires an initial selection of the 
number of source and interference signals to be 
approximated in (9).  However the models for sources and 
interferences are identical and not easily distinguished. This 
is because the algorithm is originally designed to take 
advantage of a pre-stimulus period, when the sources are 
silent and only interferences and random noises exist. The 
pre-stimulus data is used to learn the model parameters ܤ, ܷ ܽ݊݀ ܸ.  These parameters are then held constant while ܣ ܽ݊݀ ܺ are learned with the post-stimulus data.  In this 
study, the CAP like activities evoked via the 130 Hz 
sinusoidal stimulation have high signal strength compared to 
background activities.  As such, we can use (13) instead of 
(9) to approximate both the source and interference signals 
together knowing that the source components should have ฮ݆ܧฮ, ݆ ൌ 1:  that are significantly higher compared to ܬ
background activities. ܬ is the combined number of sources 
and interferences.   

 ܻ ൌ ܼܧ  ܧ ܸ ൌ ሺܤ ܣሻ, ܼ ൌ ൬ܷܺ൰ ܧ א Թ௫, ܼ א Թ௫ே 

(13) 

 
In this study ܬ is set to 15.  The learned ฮ݆ܧฮ are ranked in 
descending order. The learned factor, associated with ԡ1ܧԡ,  
along with other factors that satisfy ฮ݆ܧฮ  0.25ԡ1ܧԡ  are 
considered to be part of the source signal while the 
remaining factors are considered interferences.  In the 
remaining section, the proposed algorithm is evaluated with 
data acquired from 6 rabbits, with each rabbit providing two 
sets of trials (left and right hind legs).   

III. RESULTS 
During experimentation, 30 seconds stimulation epochs are 
administered separately to the Tibial and Peroneal nerve 

branches.  The CAP like responses evoked by the 
stimulation paradigm for both nerve branches are shown in 
Fig. 2.  In the figure, 0.1s of recorded and preprocessed 
nerve activities averaged across the 16 FINE contacts are 
plotted.  

 
Fig 2. 0.1s of evoked Peroneal and Tibial signals averaged across the 16 
FINE contacts. 

Each 30s data segment is split into two 3s and 27s segments 
where the 3s segments are used to learn the spatial filters and 
the 27s segments are used to evaluate their performance. The 
spatial filters are judged by the SNR of the extracted source 
signals and the amount of cross-talk between the sources.  
Since we know the time of the evoked CAP responses, for 
each source ݆, we can average all its CAP responses together 
to form ܻ݆ܲܣܥ that contains mainly source activities. 
ሺ݊ሻܲܣܥ݆ܺ  ൌ ݉݅ݐݏܭ1  ݆ܺሺܶ݇

݉݅ݐݏܭ
݇ൌ1  ݊ሻ, ݊ ൌ 0: ܹ െ 1 

(14) 
 

 evoked response and ܹ=23 is ݄ݐ݇ is the set number of evoked responses to be averaged, ܶ݇ is the start point of the ݉݅ݐݏܭ 
the width of the CAP responses in sampling points. Let ܺԢ݆  
be all the sample points of ݆ܺthat are not within a CAP 
response, then the SNR of the extracted source ݆ܺ can be 
defined as 
 ܴܵܰሺ ܺሻ ൌ 10log ቆܲሺ ܺሻܲሺ ܺᇱሻ ቇ (15) 

 
where ܲ is power.  To measure cross-talk between two 
sources for a given filter ݆ܨ we measure the cross-talk ratio 
(CTR) as  
ሻܨሺܴܶܥ  ൌ 10log ቆܲሺ ܺሻܲሺ ܺஷሻቇ (16) 

 
Spatial filters are constructed over 3s data segments using 
both the traditional Champagne algorithm i.e. (11) and the 
proposed algorithm (12).  To illustrate the improvement in 
cross-talk suppression using the proposed algorithm, we 
build a test data segment by concatenating Peroneal and 
Tibial evoked signals, with its average signal across the 16 
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FINE contacts shown at the top of Fig. 3.  In the figure, the 
Peroneal and Tibial activities are delineated by arrows.  
Spatial filters (PFilter, TFilter) constructed using the 
proposed algorithm as well as the traditional Champagne 
(ChampP, ChampT) for the extraction of Peroneal and Tibial 
signals respectively are applied to the test signal and the 
results plotted. 

 
Fig 3.  The test signal consisting of both Peroneal and Tibial activities are 
shown in the top plot.  The filtered outputs by the PFilter, TFilter, ChampP 
and ChampT are illustrated in subsequent plots. 

It can be observed that while ChampP and ChampT both 
extracted their signals of interest, there is considerable cross-
talk i.e. Tibial activities are significant in the ChampP 
filtered signals while Peroneal activities are evident in the 
ChampT filtered signals.  These cross-talks greatly limit the 
utility of the control sources because they are effectively 
interferences that limit the dynamic range of the control 
signals.  In comparison, PFilter and TFilter do a much better 
job of suppressing cross-talk between the sources.  In both 
filtered signals, there is little activity from the interfering 
source, achieving both high SNR and CTR.  A comparison 
of the filters’ sensitivity fields are shown in Fig. 4.  

 
Fig 4. Illustration of each filter’s sensitivity to the M pixels.  The brighter 
areas indicate the incorporation of those pixel activities while the darkest 
areas represent subtractions. 

The original filters ChampP and ChampT combine activities 
from pixels that are often under the influence of the 
interfering source, resulting in substantial cross-talk.  Filters 
PFilter and TFilter not only avoid pixels that are heavily 
impacted by the interfering source but they often subtract the 
activities of those pixels from the extracted source signal of 
interest.  Fig. 5 plots the average performances, over 12 
trials, of the proposed algorithm and Champagne, against the 
input signals’ SNR and CTR.  Since the exact input signals 
are not known we approximate them with the average 
signals across the 16 FINE contacts.  These approximated 
inputs have mean SNR > 15dB but poor CTR < 0.4dB across 
the Peroneal and Tibial nerves.  Compared to the input, the 

Champagne filters are able to achieve similar mean SNR 
performance > 15dB for both Peroneal and Tibial signals 
and higher mean CTR > 1.9dB.  However, these CTR values 

 
Fig 5. Performance comparisons between Champagne and the proposed 
algorithm. 

are still low and limit the utility of the extracted signals 
despite the higher SNRs.  Filters constructed using the 
proposed algorithm exhibits considerable improvement in 
cross-talk suppression, average CTR > 14dB while 
maintaining average SNR > 13dB.  This is a significant 
improvement in that the extracted signals are no longer 
constrained by the poor CTR values.  The reduced SNR 
performance is expected for these filters since their solution 
spaces are limited by cross-talk interferences.    

IV. CONCLUSION 
In this paper, we proposed a novel source signal 

extraction method based on the Bayesian algorithm 
Champagne.  The algorithm demonstrated its ability to 
balance both the SNR of the extracted source signals and the 
amount of cross-talk between the signals.  While effective, 
the proposed method requires the ability to evoke individual 
sources separately.  We are currently developing an 
improvement by utilizing an iterative independent 
component analysis algorithm to extract source signals that 
are mixed in time.   Eventually we hope to implement the 
algorithm to acquire voluntary signals from human amputee 
patients for the control of artificial limbs. 
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