
  

  

Abstract—A previously developed neural-machine interface 
(NMI) based on neuromuscular-mechanical fusion has showed 
promise for recognizing user locomotion modes; however, 
errors of NMI during mode transitions were observed, which 
may challenge its real application. This study aimed to 
investigate whether or not the prior knowledge of walking 
environment could further improve the NMI performance. 
Linear Discriminant Analysis (LDA)-based classifiers were 
designed to identify user intent based on electromyographic 
(EMG) signals from residual muscles of leg amputees and 
ground reaction force (GRF) measured from the prosthetic leg. 
The prior knowledge of the terrain in front of the user adjusted 
the prior possibility in the discriminant function. Therefore, 
the boundaries of LDA were adaptive to the prior knowledge of 
the walking environment. This algorithm was evaluated on a 
dataset collected from one patient with a transfemoral (TF) 
amputation. The preliminary results showed that the NMI with 
adaptive prior possibilities outperformed the NMI without 
using the prior knowledge; it produced 98.7% accuracy for 
identifying tested locomotion modes, accurately predicted all 
the task transitions with 261-390 ms prediction time, and 
generated stable decision during task transitions. These results 
indicate the potential of using prior knowledge about walking 
environment to further improve the NMI for prosthetic legs. 

I. INTRODUCTION 
OWER limb amputation is a major cause of disability 
[1]. Recent advancements in powered artificial legs have 

made it possible to allow leg amputees to perform versatile 
tasks efficiently [2-3]. To switch the performing task, the 
users must “tell” their intent to the prosthesis so that the 
correct control mode can be selected. This is achieved by 
using manual approaches (i.e. extra body motions[4] or a 
remote key fob[5]), intent recognition based on mechanical 
sensing[6], or “echo control” strategy[5, 7](i.e., prosthetic 
leg simply repeats the motion of the sound leg). These 
approaches are, however, inadequate for leg amputees to 
perform safe, smooth task transitions due to system time 
delay or unreliability for recognizing user intent.  

In order achieve intuitive control of artificial legs, an 
interface between human neuromuscular system and 
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powered prosthetic device is essential. Our research group 
has developed a novel neural-machine interface (NMI) for 
prosthetic legs based on surface electromyographic (EMG) 
signals, one of the major neural control sources [8]. A 
phase-dependent EMG pattern recognition strategy was 
employed for locomotion mode identification [8].  When the 
Linear Discriminant Analysis (LDA)-based classifier was 
used, around 90% average accuracy for identifying seven 
locomotion modes was achieved. The performance of NMI 
was further improved by fusing EMG signals from the 
residual limb with the mechanical information measured 
from prostheses [9]. We called this method neuromuscular-
mechanical fusion. The preliminary evaluation showed that 
the NMI based on neuromuscular-mechanical fusion 
produced 95.6% average accuracy for identifying individual 
tasks in the static states (i.e. the states when subjects 
continuously performed the same task) and accurately 
predicted 96% of tested task transitions with an average of 
260ms prediction time. Although these results are 
promising, the real application of designed NMI for artificial 
legs was challenged by three types of observed errors: (1) 
unstable decisions during task transitions, (2) delayed 
decisions in task transitions, and (3) false task transitions in 
static state.  

One of the potential solutions to further reduce the errors 
in NMI is to introduce the information about walking 
environment to the intelligent intent recognition system. 
This concept is inspired by the locomotion mechanism in 
biological systems. Animals and human rely on the vision 
system to obtain the information of walking terrain in front 
them and then modulate the locomotion patterns to adapt to 
the walking environment [10-12]. If our designed NMI can 
“know” the walking terrain in front of the user, this prior 
knowledge might further improve the performance of NMI 
for recognizing user’s locomotion mode and predicting 
mode transitions. The information of walking terrain can be 
obtained by various sensors and techniques. For example, 
computer vision techniques could provide information of the 
terrain in front of the user based on real-time video data 
[13]. However, before selecting sensors for terrain 
recognition, two fundamental questions facing us are (1) 
whether or not the NMI performance can be improved by 
introducing the prior information about type of terrains in 
front of the user, and (2) how to apply this prior knowledge 
to the pattern recognition algorithm in NMI.   

To address these fundamental questions, in this study the 
prior knowledge of walking environment was used to 
adaptively adjust the discriminant functions of pattern 
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recognition algorithm. We investigated the effects of prior 
knowledge on the performance of adaptive NMI. The prior 
possibility were simulated and tested on the data collected 
from a transfemoral (TF) amputee. The preliminary result of 
this study may lead to an adaptive NMI for prosthetic legs 
with improved accuracy and reliability. 

II. METHODS 

A. Fusion based Neural-Machine Interface (NMI) 
Multichannel EMG signals recorded from the residual 

thigh and load measurements from a 6-DOF load cell were 
simultaneously streamed into the NMI and segmented by 
continuous, overlapped analysis windows. In each analysis 
window, four EMG features (mean absolute value, number 
of slope sign changes, waveform length, and number of zero 
crossings [14]) were extracted from each EMG signal; 
mechanical features (maximum, minimum, and mean values) 
were computed from individual DOFs. Both EMG and 
mechanical features were fused into one feature vector, 
which was then sent to a phase-dependent classifier to 
decide the user’s locomotion mode. Detailed description of 
this previously designed NMI can be found in [8] and [9]. 

B. Pattern Recognition Algorithm 
Linear Discriminant Analysis (LDA) was investigated in 

this paper to classify the user’s locomotion mode. LDA has 
been reported as having a comparable classification 
performance to more complex types [15-17] and as being 
computationally efficient for real-time myoelectric 
prosthesis arm control [18]. The main idea of LDA is to 
classify observed data to a locomotion mode (class), in 
which the posterior probability can be maximized. For a G -
class classification problem, the posterior 
probability )|( xCP g is the probability of 

class gC ( [ ]Gg ,1∈ ) given the observed feature 

vector x and can be expressed as 
( ) ( )
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g
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where ( )gCP is the prior possibility, ( )gCxP |  is the 

likelihood, and ( )xP is the possibility of observed vector x . 
Given the locomotion mode

gC , the observed feature vector 

was assumed to conform to a multivariate normal 
distribution. Here, every class shares the same covariance. 
Thus, the maximization of posteriori possibility in (1) 
equaled the maximization of the linear discriminant function 
defined as 
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where gμ is the mean vector in gC , and Σ is the common 

covariance matrix. Both gμ and Σ can be estimated from the 

training data set.  

C.  Adaptively Adjusting Prior Probability based on the 
Knowledge of Walking Environments 

In many applications, equal prior probabilities in (2) were 
assumed for all classes and therefore, can be ignored. When 
the prior probabilities were not the same across classes, the 
discriminant function in (2) must consider ( )gCP  [19]. In 

this study, the prior knowledge of walking environment was 
used to adaptively adjust the the prior probability of 
discriminant function of LDA. The designed NMI 
considered 6 locomotion modes (classes): level walking 
(W), stepping over an obstacle (O), stairs ascent (SA), stairs 
descent (SD), ramp ascent (RA), and ramp descent (RD). 
Assume the initial task was level ground walking. The prior 
possibilities of these classes were 30% for W, 14% for the 
other tasks, respectively. At time t, given that there was a 
stair in front the user, we modified the prior probabilities 
from that moment to be 45% for SA, 26% for W and RA, 
and 1% for other tasks as they were unlikely to happen.  

The pattern classification involved two procedures: 
training and testing. During the training session, 

gμ and Σ were estimated based on the feature vectors 

derived from the training data collected from two 
experimental trials. In the testing procedure, the observed 
feature vector of each analysis window and our simulated 
adaptive prior knowledge were fed into the classifier to 
calculate the 

gCd in (2) for each class. The observed feature 

vector was classified into the class that can maximize the 
linear discriminant function. 

III. EXPERIMENTS AND EVALUATIONS 

A. Participant and Data Collection 
This study was conducted under Institutional Review 

Board (IRB) approval and consent of the subject. One male 
subject (age: 51, height: 177.8 cm, weight: 80.3 kg) with a 
unilateral transfemoral (TF) amputation (TF01) was 
recruited. 

Nine EMG electrodes were placed surrounding the 
residual limb. Two gluteal muscles (gluteus maximus and 
gluteus medius) were also monitored. A 16-Channel EMG 
System (Motion Lab System, US) was used to collect and 
filter EMG signals between 20 Hz and 420 Hz with a band-
pass gain of 1000. Mechanical ground reaction forces and 
moments were measured by a 6 degrees-of-freedom (DOF) 
load cell mounted on the prosthetic pylon. EMG signals and 
mechanical loads were digitally sampled at a rate of 1000 
Hz and synchronized. 

B. Experiment Protocol 
In the experiment, the TF subject wore a hydraulic 

passive knee. Six locomotion modes (W, O, SA, SD, RA, 
and RD) and four mode transitions (W  SA, W RA, 
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SD W, and RD W) were investigated. For each 
locomotion mode, 15 trials were conducted. Rest periods 
were allowed between trials to avoid fatigue.  

C. Evaluation Methods 
A transition between two locomotion modes (e.g. from 

level walking to stairs ascent) was a dynamic process and 
cannot be distinctively separated, which makes the system 
performance evaluation difficult. Thus, we separated data 
into the static states (the states when subjects continuously 
performed the same task) and transitional periods (one and 
half stride during the transition between two task modes [9]) 
and evaluated the system individually for the two states.  

The studied task modes (classes) in the static state include 
W, SA, SD, RA, and RD. Note that the task of stepping over 
an obstacle was not included because this task only 
consisted of one stride cycle. The overall classification 
accuracy (CA) in the static states was then quantified by 

%100×=
atad testing applied of number Total

 data testing classifiedcorrectly  of NumberCA     

(3) 
Two parameters were used to quantify the performance in 

the transitional periods: (1) the number of missed transitions 
and (2) prediction time of the transitions ( preT ). The preT  is 

defined as the elapse time from the moment when the last 
stabilized task transition was recognized (td) in the 
transitional period to the critical timing for the investigated 
task transitions (tc). We identify critical timing as: For all 
transitions from level walking (W  SA, W RA), the 
desired transition should be identified before the prosthetic 
foot leaves the ground to allow the knee to produce the 
proper flexion torque and prevent tripping; For transitions to 
level walking (SD W, RD W) the transition should be 
identified prior to weight acceptance. The detailed definition 
of these parameters can be found in [9]. 

D. Simulation of Prior Knowledge of Walking Environment 
The prior knowledge of walking environment was 

simulated by modifying the prior possibilities of individual 
classes in LDA. The simulation was tested on the data 
recorded during both static states and transitions.  

In the mode transitional periods, we assumed that the 
prior knowledge of next walking terrain was obtained 
starting from the initial prosthetic foot contact before 
switching the negotiated terrain and terminating at the end of 
single stance phase after switching the terrain. The prior 
possibilities of individual classes were modified accordingly 
based on the type of task transitions. 

In real applications, the prior information could be noisy. 
In order to test the robustness of our design to the errors of 
prior knowledge, we simulated the false terrain information 
by applying incorrect prior possibilities to the classifier 
during static state. The type of false terrain was selected 
based on the classification confusion matrix in static state, 
obtained in our previous study. For example, during the 

static state of level-ground walking (W) task, an incline was 
chosen as the false terrain in front of the user because the 
class of level walking was most confused with ramp ascent. 
Then the prior possibility for each class was modified 
accordingly, starting from a heel contact of a gait cycle. The 
simulated false information lasted for the whole time during 
level walking.  

IV. NUMERICAL RESULTS AND EVALUATIONS 

A. Mode Recognition Performance in the Static State 
For the classification accuracy test in the static state, the 

NMI algorithm with accurate, adaptive prior probabilities 
produced 98.7% accuracy for identifying the five tested 
locomotion modes, which outperformed the NMI without 
using the prior information (95.6% classification accuracy). 

To test the robustness of LDA with false prior 
probabilities, incorrect prior probabilities were applied to the 
data in the static state of level walking. This simulation 
considered the worst scenario (refer to Section III D). The 
accuracy for classifying level walking task dropped only 
6.1% when using incorrect prior possibility, compared to the 
result without adding any prior information (i.e. equal prior 
possibility). It indicated that during the static states, the 
pattern of neuromuscular and mechanical signals dominates 
the discriminant power than the prior information. However, 
accurate terrain recognition and modeling of prior 
probabilities are desired in order to enhance the reliability of 
intent recognition system. 

B. Transition Recognition Accuracy 
In the transitions, the NMI with prior information did not 

miss any transitions, while the NMI without prior 
knowledge missed 3 transitions in the defined transitional 
periods among tested transitions. 

Table I shows the prediction time for 4 types of 
transitions. Based on our definition of prediction time, the 
larger the value, the earlier a stabilized transition was 
recognized. Missed transitions were not considered for 
computing the prediction time. The LDA algorithm with 
adaptive prior probabilities revealed slightly earlier 
recognition of task transitions partly because it produced 

more stable decisions than the algorithm without the prior 

TABLE I 
THE PREDICTION TIME OF MODE TRANSITIONS BEFORE CRITICAL 

TIMING 

Unit:ms W SA W RA SD W RD W 

LDA w/o 
Prior 

Knowledge 

262 
±79 

231 
±145 

359 
±174 

192 
±94 

LDA w/ 
Prior 

Knowledge 

332 
±105 

273 
±151 

390 
±93 

261 
±132 

Note: W, SA, RA, SD, and RD denote level walking, stairs ascent, 
ramp ascent, stairs descent, and ramp descent respectively. 
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information.  

C. Representative Result of Continuous Mode Identification 
Fig. 1 compares the performance of continuous 

locomotion mode identification for fusion-based LDA 
classifiers with and without using the prior knowledge in a 
representative trial. A smooth transition was required to be 
detected before the swing phase (i.e. critical timing) so that 
the control can promptly instruct the artificial joints and 
keep the prosthetic foot clear of the staircase during swing. 
Our investigated approach demonstrated earlier transition 
predication and more stable classification decision during 
the transition than the method without using prior 
knowledge. 

V. CONCLUSIONS 
The presented study aimed at investigating the effects of 

additional prior information of walking environment on the 
performance of a neural-machine interface for artificial legs. 
The preliminary results showed that the NMI with adaptive 
prior possibilities outperformed the NMI without using the 
prior knowledge of walking terrains. Our study also reveals 
that this algorithm is robust to noisy and imperfect sources 
of prior knowledge. These results indicate the potential for 
using prior knowledge about walking environment to 
improve the performance of NMI for prosthetic legs. 
However, in this study the testing was limited to one subject, 
and the presented results lack statistical power. In addition, 
only a linear discriminant algorithm was used. Further 
investigations include selecting sensors for accurate terrain 
recognition and modeling the optimal prior probabilities that 
find the trade-off between transition recognition accuracy 
and system robustness. Additionally, we will apply this 
concept to different pattern recognition algorithm and test 
more leg amputees.  
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Fig. 1.  Results of continuous mode identification from a trial that 
recoded transition from level ground walking to stairs ascent. 
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