
  

 

Abstract—The field of ballistocardiography seems to be 

enjoying a recent resurgence, most notably through the 

development of novel technologies and signal processing 

methods for measurement and analysis. After the method 

almost vanished in the late 80’s and 90’s, it is reasonable to 

wonder what is different this time, and if the technique has now 

more chances of becoming what its pioneer always wanted – a 

widespread clinical tool. This paper is an effort to compare and 

contrast this novel wave of research (notably in the context of 

the authors’ own work). It also suggests that the new 

approaches have several key differences with past embodiments 

that place them in a good position to address some specific 

issues such as cardiac resynchronization therapy device 

optimization or congestive heart failure monitoring. This 

optimism is largely fed by the recent technological advances 

enabling the measurement of the BCG unobtrusively, 

frequently, at home or in a hospital, and by a re-focus on 

monitoring and trending applications. 

 

Index Terms—Ballistocardiogram, cardiovascular monitoring, 

non-invasive monitoring, hemodynamics 

I. INTRODUCTION 

ALLISTOCARDIOGRAPHY is a non-invasive method 

based on the measurement of the body motion generated 

by the ejection of the blood at each cardiac cycle. It is one of 

the many methods relying on detection of cardiac and 

cardiovascular-related mechanical motions, such as 

phonocardiography, apexcardiography, seismocardiography, 

kinetocardiography to list just a few. Ballistocardiography 

(BCG), originally discovered in the late 19
th

 century [1], has 

been the focus of intense research in 1940‟s through the 

early 80‟s, a period after which the method faded away (see 

Figure 1). This disappearance can be traced to a few general 

factors: 1) a lack of standard measurement techniques, with 

various methods leading to subtly different signals [2]; 2) a 

lack of understanding of the exact physiologic origin of the 

BCG waveform, as well as clear guidelines for interpretation 

of the results, leading to circumspection from the medical 

community; 3) a primary focus on clinical diagnostic (e.g., 

myocardial infarction, angina pectoris, coronary heart 

disease [3, 4]), which typically requires a high level of 

specificity and reliability that the BCG had not reached [5]; 
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4) the dawn of ultrasound and echocardiography techniques, 

which rapidly overtook BCG and related techniques for non-

invasive cardiac and hemodynamic diagnostic. 

In the last decade or so, however, the general field of 

ballistocardiography has seen a surprising revival (see 

Figure 1). In light of the many shortcomings of the method 

listed above, it is thus legitimate to ask whether this 

comeback is based on solid grounds. This paper, without 

being an exhaustive review of current research, is pointing at 

some significant differences (as well as some similarities) in 

today‟s approaches, which the authors believe should 

warrant the BCG a second chance. 

II. DEFINITION AND PHYSIOLOGICAL RELEVANCE 

Imperative to the discussion of the physiologic origin of 

the ballistocardiogram is the clarification of what constitutes 

a ballistocardiogram in the first place. As mentioned in the 

introduction, mechanical motions due to cardiac and 

hemodynamic events have been recorded from multiple 

locations, with multiple types of sensors (position, velocity, 

and acceleration), leading to a confusing number of 

techniques and signals, sometimes related, sometimes not. 

This multitude of methods has certainly contributed to 

blurring the field in the past, and care should be taken not to 

repeat this situation. 

The ballistocardiogram is defined as the reaction 

(displacement, velocity or acceleration) of the whole body 

resulting from cardiac ejection of blood. Consequently, it is 

an integration of multiple forces related to movements of 

blood inside the heart, inside the arteries (primarily the 

aorta), and movement of the heart itself. It is inherently a 3D 

signal, although most measurement techniques focus on the 

longitudinal, head-to-toe component. Its interpretation has 
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Fig. 1. Publication rate of BCG-related research over the past 100 

years (source: Medline. Search keywords: ballistocardiogram and 

derivative, excluding specifically EEG, MRI and fMRI papers). 
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been rendered more difficult by the fact that the signal is 

dependent on the measurement method [2]. Early on, an 

effort was made to standardize the measurement techniques 

and signal labeling in order to help comparison and 

dissemination of data [2]. In the case of the classic, Starr-

based longitudinal BCG, there is a general agreement that 

the early peak (H, Figure 2) is related to the motion of the 

heart early in systole, and that the main IJK complex is 

related to the ventricular ejection and aortic flow [6, 7]. 

There is less agreement on the later waves. While the BCGs 

of healthy people can be rather well interpreted in light of 

physiologic events, BCGs of patients with cardiovascular 

diseases tend to be more difficult to interpret because of the 

complex interplay of the various internal forces. As a result, 

interpretation of abnormal BCG has been mostly based on 

experimental data, and largely qualitative [8]. Since the early 

work on interpretation, research was aimed at refining the 

understanding of the signals, using various models and 

transfer functions (e.g., [9]), but it did not fundamentally 

improve the situation. Modern imaging and simulation tools, 

however, may offer interesting new approaches. 

In collaboration with the Cardiovascular Biomechanics 

Research Laboratory at Stanford University, we started 

using Computational Fluid Dynamics (CFD) to 

quantitatively relate BCG signals to hemodynamics. Using 

Computer Tomography (CT) models of aortas (where it is 

believed most of the force related to J wave is generated), 

we computed the forces at the fluid-solid interface [10]. 

These forces would be transferred to the whole body through 

the tight coupling of the aorta to the spine. An example of 

simulation for a case of aortic coarctation is presented in 

Figure 3. Of particular relevance is the two-fold decrease in 

generated force (projection over the longitudinal axis), and 

the magnitude of the force post-operation – approximately 

2 N – similar to normal, measured BCGs. This model is still 

limited, but points to a novel research direction that can 

potentially augment the understanding of the BCG signals. 

We are now looking to extend this model to include lower 

limbs (in order to provide adequate simulation of pulse wave 

reflections), and a realistic coupling to body tissues, which 

will help modeling the mass-spring-damper response of the 

whole body.  

III. MEASUREMENT METHODS 

For the larger part of the active period of BCG research, 

the measurements were dominated by three types of systems 

– the Starr BCG (high-frequency BCG), the Nickerson BCG 

(ultra-low frequency BCG), and the Dock BCG (direct-body 

BCG). Characteristics of these methods can be found in 

Scarborough [2]. Each of these systems, although 

 
Fig. 3. a) Coarctation model from CT scans (red arrows show site of 

coarctation), and b) CFD simulations of force resulting from fluid-

solid interaction in the longitudinal direction, pre- and post-
operation. The two-fold reduction in force is consistent with 

experimental data from [11]. 
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Fig. 2. Example of BCG waveforms acquired by a modified weighing scale (see Inan, et al. [17]). 
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standardized, generated different BCG morphologies. This 

lack of consistency in signal certainly contributed too to the 

low penetration of BCG into the clinic, as interpretation was 

slightly different. Signal processing was also rudimentary, 

only making use of computer methods starting in the 70‟s. It 

is thus fair to say that the major developments in the field of 

BCG in the past decade have come mostly from the 

technology side. Novel sensing modalities, such as static 

charge-sensitive beds [12], piezoelectric films on chairs and 

beds [13, 14], force-plates [15], have considerably simplified 

the measurement of BCG signals. Inspired by Williams [16], 

our group has pioneered the use of modified weighing scales 

and developed several methods for the acquisition of high 

fidelity standing or sitting BCGs [17-19]. 

These technological developments have made the BCG 

much more accessible and enabled its use in applications 

previously impossible (e.g. monitoring at home). However, 

it should be noted that many of these approaches lead to 

non-standard BCG (in the definition of Scarborough) due to 

the sensing modality, direction and location, or the coupling 

to the subject. For instance, bed-based systems measuring 

the dorso-ventral BCG (different from the more traditional 

longitudinal BCG [20]), may also sense components related 

to local heart motion (as seen in seismocardiogram or 

apexcardiogram). Cross-axis coupling through the mattress 

or sensor may further complicate the signal [14]. This may 

not impact all applications, but must be acknowledged, for 

the signals may be misinterpreted. 

IV. APPLICATIONS 

A. Diagnostics versus monitoring 

As highlighted in the introduction, a majority of the BCG 

work in the early days was focused on the diagnosis [3, 4], 

or even prognosis [21, 22] of cardiovascular diseases. Such 

applications typically require a high sensitivity and 

specificity which has not been achieved with BCG, owing 

largely to its complex origin and confounding factors. Age 

for instance, has been shown to reduce the diagnostic value 

for coronary heart disease in older people, as changes in the 

BCG observed with aging in healthy, asymptomatic people 

tend to be similar to those due to coronary disease [23, 7]. 

Of particular interest are studies involving monitoring 

changes in the BCG over time or following a stress (exercise 

[24], drugs [25]). While the integral aspect of the BCG 

precludes a specific anatomical diagnosis, the signal remains 

very sensitive to disturbances of factors impacting cardiac 

dynamics [20]. For instance, Mandelbaum followed post-

myocardial infarction patients over 18 months and found the 

serial BCG a valuable indicator of prognosis for recovery 

[22]. As a relative measure, much of the inter-patient 

variability in the BCG is indeed removed. The impact of the 

measurement system is also reduced. We would argue that 

these types of trending approaches, paired with an evaluation 

of primary features in the BCG (such as J or IJ amplitude, 

broadly accepted as reflecting ventricular ejection), might 

offer a realistic goal. Monitoring of cardiac ejection in 

diagnosed heart failure patients, during exercise stress or 

cardiac resynchronization therapy optimization are good 

examples of such applications, as illustrated below. The 

current availability of unobtrusive sensors also open the door 

to many non-contact, heart rate-based applications [14, 15], 

relaxing greatly constrains on fidelity and interpretation of 

the BCG. 

B. Example application – CRT device optimization 

Cardiac resynchronization therapy (CRT) has been 

developed to treat for abnormal delays in contraction 

between the two ventricles, typically occurring in case of 

advanced heart failure. Using a biventricular pacemaker, the 

timing between the two ventricles and the atria can be 

controlled. However, the atrio-ventricular (AV) and inter-

ventricular (VV) delays corresponding to an optimal cardiac 

function (or cardiac ejection) will vary from patient to 

patient. This optimization has relied so far mostly on the 

experience of the cardiologist, and echocardiography 

measurements. It has been shown recently though that even 

echocardiographic data, thought to be the non-invasive 

„gold-standard‟, does not lead to reliable tuning [26]. 

We thus explored the use of BCG to guide this 

optimization. BCG is a well-accepted measure of ejection 

force (especially its IJ component), and the differential 

 
Fig. 4. Optimization of inter-ventricular delays (VV) in CRT: 

a) ensemble averaged sitting BCG waveforms for optimal and sub-
optimal delays; b) comparison of J-wave amplitudes (related to 

cardiac ejection) for optimal VV delays (based on prior 

optimization) and sub-optimal positive delays (normalized, 

mean±std, paired t-test). 
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measurement pre- and post-tuning provides a strong 

immunity to confounding variables and a weak dependence 

on absolute values. For these preliminary experiments, we 

used a sitting BCG configuration, in which the same scale as 

described in [17] was placed between the seat and the 

patient. Recordings were carried out throughout the normal 

optimization session (under IRB-approved protocol #10342), 

and data was analyzed according to [17]. Figure 4 shows the 

relative change in J-wave amplitude for optimal VV delays 

(as previously established by the cardiologist) and sub-

optimal positive VV delays (ranging from +50 to +200 ms 

depending on the patient). The higher J-wave amplitudes for 

optimal delays would indicate an increased cardiac ejection 

compared to suboptimal settings. Even with a small number 

of subjects, statistical significance was reached, 

demonstrating the strong potential of BCG measurements in 

well-controlled, differential or longitudinal applications. 

V. CONCLUSION 

Despite the elapsed time, the BCG of today seems to face 

many of the same challenges that brought it down in the 

70‟s: a multitude of measurement methods, a lack of 

standardization, and a lack of deep understanding of the 

physiological basis. In addition, the researchers must fight 

the somewhat negative image that its previous demise left in 

the medical field. So is BCG worth revisiting? We argue that 

a positive answer lies in the choice of applications of the 

BCG. Modern technology enable the use of BCG in places 

not reachable previously – the cardiologist‟s office, the 

home. But more importantly, a case is made for applications 

requiring basic analysis of the signal (as for heart rate, or 

cardiac ejection), and based on serial measurements. CRT 

device optimization was given as an illustration of one of 

these applications.  

In parallel, further research in the modeling and signal 

interpretation enabled by modern computing should be 

pursued, and one day may enable the BCG to be the 

diagnostic tool long-sought after in the early years. 
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