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Abstract— We describe a method for performing modeling
and simulation to predict the strain and stress experienced
by tissues resulting from reconstructive cardiothoracic surgery.
Stress computation is an important predictor of the quality and
longevity of a repair and can therefore be used as guidance
by a surgeon when deciding between various repair options.
This paper uses the mitral valve repair as a use case because
of its relevance and prevalence among reconstructive cardiac
interventions. The modeling method presented here is informed
by the patient specific anatomical structure recovered from real
time 3D echocardiography. The method exploits hyperelastic
models to infer realistic strain-stresses. We show through
experiments using actual clinical data that results are in line
with physiological expectations.

I. INTRODUCTION

Modeling and simulation has many applications ranging
from diagnostics to computer-aided surgical planning and
guidance. Our work is motivated by the challenges encoun-
tered in cardiac surgical interventions, which are mostly
reconstructive in nature. Among all cardiovascular diseases,
the test case considered here is mitral valve reconstruction
(valvuloplasty) because of its clinical relevance and surgical
prevalence.

Most interventions for cardiovascular diseases (CVD)
would benefit from pre-operative planning, by allowing the
surgeon to evaluate the risks and benefits associated with a
specific surgical option. Such systems would allow the sur-
geon to evaluate the quality of the reconstructive procedure
by inspecting the resulting predicted postoperative anatomy
and physiology (as was done in [1], [2]). Another benefit
of the preoperative predictive planning is in examining the
range of strains and stresses experienced by the reconstructed
organ to assess the quality of the repair. Such quantities
are also indicative and predictive of the longevity of the
reconstruction. This is an important factor when considering
the postoperative mortality and morbidity associated with
procedures such as valvuloplasty [3].

While there is a large body of work in cardiac mechanical
modeling (starting with [4] and including recent examples
such as [1], [2], [5], [6], [7], [8]), until recently most of
it has not exploited patient specific information for surgical
planning and guidance. The recent availability of real time
echographic 3D data has made possible the goal of cardiac
modeling and simulation using patient-specific anatomy, as
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well as the possibility of benchmarking the predictive mod-
eling against ground truth datasets [1], [2], [9]. The main
contribution of this paper is the joint use of hyperelastic
models and patient specific anatomy to predict the closure
state and the stresses associated with a specific valve repair.
Our models use a static loading method [10], [11], and
incorporate physiological loads and realistic hyperelastic
properties of valve soft tissues [6], [12]. Additionally, our
modeling is informed by the patient specific anatomy of the
valve and left heart apparatus recovered from real time 3D
echocardiography (RT3DE). The benefits of this modality
include its small size, safety, low cost, and high acquisition
rate, a key factor when imaging rapid valvular motion. In
our test study (valvuloplasty), a pre-operative simulation
exploiting 3D anatomy recovered from 3D TEE would help
decide which reconstructive option is most likely to improve
the valve performance, and would provide information that
is of critical aid to cardiovascular surgeons and cardiologists.
The envisioned planning process starts with an open 3D valve
structure at diastole, derived by segmenting RT3DE imagery
and edited by a surgeon to remove artifacts and reflect the
planned surgical modifications. From the open valve, our
system predicts, via physics-based modeling and simulation,
the closed valve configuration at systole to characterize the
MV leaflets’ ability to competently coapt, and the associated
strains and stresses at systole for this closed configuration,
when the system is under systolic blood load.

II. QUASI-STATIC MV PHYSICS-BASED MODELING

Unlike our prior work in [1], which was concerned with
computation of the valve dynamics and left heart hemody-
namics, our goal here is to design a physics-based MV model
to infer stresses and strains at the closed position of the valve
(during systole) based on the open position valve configura-
tion (during diastole). We use a shape-finding finite element
approach previously applied to tensile structures [10], [11].
We have chosen this approach because the valve leaflets
are thin structures made up of connective tissue with elas-
tic properties (tensile, compressive and bending) similar to
certain types of fabric; additionally, the valve behaves like
a tensile structure since its leaflets are tethered by chords
(chordae tendineae) attached to papillary muscles, preventing
these from prolapsing into the atrium under sustained and
significant systolic blood pressure. Unlike our preliminary
work reported in [2], which used linear elastic constitutive
models, this work uses a hyperelastic tissue model to infer
resultant stresses [6], [12].
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We start our process by segmenting the left heart endocar-
dial and valvular structure from RT3DE using dynamic con-
tour and graph optimization techniques, reported in [13]. A
mesh is then fitted to the segmented leaflets and lower atrium.
At each node of the mesh we prescribe either displacements
or forces. Modeled forces include those due to fluid pressure,
hyperelastic stress, collision with other portions of the mesh,
and tethering of the valve to the chordae tendineae. The
initial configuration of the open mesh is used to specify the
reference energy point for external and internal forces. The
steady state configuration of the valve system under load at
a closed position, where all forces are at equilibrium, is then
found by minimizing the system’s total energy. For any given
displacement of the nodes from the initial open configuration
(see Fig. 1), and for each node i, the total energy φ of the
displaced system is given by φ =

∑
i φi with the forces

Fi = −∇φi. Specifically, the energy is expressed as the
sum of components in φi = φXi +φEi +φTi +φCi including:
φXi , the external energy; φEi , the leaflets’ elastic energy; φTi ,
the leaflet-to-chordae tethering energy; and φCi the leaflets’
collision energy. The various energy terms are reported in [2].
The following section concentrates on the novel usage of a
hyperelastic energy law for the leaflets’ internal energy.

Fig. 1. Reference (subscripted) and deformed (unsubscripted) configura-
tion. The vectors x, y, and z represent the nodal displacements.

The macroscopic mechanical behavior of the valve leaflets
are mostly driven, at the microscopic level, by the elastic
behavior of its constitutive elastin and collagen fibres [8]:
Due to the presence of collagen fibres, the leaflets have some
ability to stretch that arises when pressure is exerted on the
collagen coils. Because of this, we have chosen to model
the leaflet elasticity using a hyperelastic strain-energy law.
In this paper, we use a law proposed by Holzapfel [6] which
is closely related to a constitutive law originally formulated
by May-Newman [12] and based on empirical evidence. This
hyperelastic energy law is expressed as:

Ψ(I1, I4) = c0

[
ec1(I1−3)

2+c2(I4−1)2 − 1
]
, (1)

and it is a function of the first and fourth invariants of
the strain tensor C (i.e., I1 = tr (C) and I4 = âT

0Câ0 is
the square of the stretch factor along the fibre direction).
The fibre direction was taken to be circumferential to the
annulus [14]. The numerical values we have used for the
parameters in this hyperelastic strain energy function were
taken from [6], and were derived to match the empirical
leaflet elasticity data in [12]: c0 = 0.0520 kPa, c1 = 4.63,
and c2 = 22.6 for the anterior leaflet, and c0 = 0.171 kPa,
c1 = 5.28, and c2 = 6.46 for the posterior leaflet. These
values were obtained by considering leaflet samples from
taken from eight porcine MV specimens among which there
was considerable variation. This, along with significant loss
of plasticity and elasticity in pathological tissue, suggests
the need to investigate in the future the recovery of patient
specific values for these coefficients. Fig. 2 shows the Cauchy
stress as a function of the stretch for the numerical values of
the coefficients defined above and for various cases including
strip-biaxial and biaxial stretching.

The derivation of the force from the hyperelastic energy
is needed by our quasi-Newton minimization approach. This
derivation is an important component of our mechanical
modeling framework. Since it is not available in the liter-
ature in the form needed by our modeling framework, we
dedicate the next paragraphs to its presentation. To simplify
notation, we will omit the node subscript index i, with the
understanding that each quantity (stress, strain tensors, etc.)
is computed w.r.t. each node of the model.

The deformation gradient tensor, F, gives the transfor-
mation between the reference and deformed configurations
shown in Fig. 1. This transformation consists of a rigid
rotation, R, and a symmetric stretch tensor, U, with F =
RU. This decomposition may also be performed in the
opposite order such that F = VR. Since the rotation R
is not physically significant, the right and left Cauchy-Green
deformation tensors, C ≡ FTF = U2 and B ≡ FFT = V2

respectively, provide a more useful measure of deformation.
For a triangular patch of a thin-shell membrane, F transforms
the triangle in the reference configuration (defined by the
vertices x0, y0, z0; opposing edges u0, v0, w0; and normal
n0) into the deformed configuration (same vectors without
subscript) as

u = Fu0 w = Fw0 (2)
v = Fv0 n = αn̂ = Fn̂0, (3)

where α ≡ |n| is the stretch factor in the direction normal
to the facet. We will also define two orthogonal reference
directions in the plane of the facet â0 and b̂0 with n̂0 =
â0 × b̂0. These vectors are transformed by F into a = Fâ0
and b = Fb̂0 with corresponding stretch factors λ = |a|
and µ = |b|. For an incompressible material, we have the
condition

detF = 1, (4)

which fixes the value of α and thus completes the specifica-
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Fig. 2. A plot of the Cauchy stress vs. stretch of the valve for our hyperelastic model.

tion of F. Without loss of generality, define the matrices

G0 ≡ u0ê
T
1 + v0ê

T
2 + n̂0ê

T
3, and (5)

G ≡ uêT
1 + vêT

2 + nêT
3, (6)

such that F = GG−10 . The condition (4) then gives α =
A0/A, where A0 ≡ |u0 × v0| and A ≡ |u× v|. This yields
an explicit representation for n,

n = αn̂ =
|u0 × v0|
|u× v|

u× v

|u× v|
=
A0

A2
u× v. (7)

Let â0 be the fibre direction in the reference configuration
(this generally corresponds to a direction circumferential to
the annulus), then the stretch factor along a is given by

λ2 ≡ |a|2 = âT
0F

TFâ0 = âT
0Câ0 ≡ I4. (8)

The second Piola-Kirchhoff stress tensor S is

S = 2ψ11 + 2ψ4â0â
T
0 − pC−1 ≡ S′ − pC−1, (9)

where I1 = trC and ψi ≡ ∂Ψ/∂Ii, with

ψ1 = 2c0c1(I1 − 3)ec1(I1−3)
2+c2(I4−1)2 , and (10)

ψ4 = 2c0c2(I4 − 1)ec1(I1−3)
2+c2(I4−1)2 , (11)

and from the condition that the normal stress is zero
(n̂T

0Sn̂0 = 0) we have

p =
n̂T
0S
′n̂0

n̂T
0C
−1n̂0

=
2ψ1

n̂T
0C
−1n̂0

=
2ψ1

|F−Tn̂0|2
= 2ψ1α

2, (12)

which gives

S = 2ψ1(1− α2C−1) + 2ψ4â0â
T
0. (13)

The Cauchy stress is a commonly referenced quantity and is
given by σ = FSFT. We are interested in the components
of σ in the directions parallel and perpendicular to a,

σaa = 2ψ1

[
|Câ0|2

λ2
− α2

]
+ 2ψ4λ

2, (14)

σbb = 2ψ1

[
|Cb̂0|2

µ2
− α2

]
+ 2ψ4

(âT
0Cb̂0)2

µ2
, (15)

σab = 2ψ1

[
âT
0C

2b̂0

λµ
− α2 â

T
0Cb̂0

λµ

]
+ 2ψ4λ

âT
0Cb̂0

µ
.

(16)

From the strain energy, Ψ, the force on each vertex is given
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by

∇Ψ = 2ψ1

[
α2u · v

A2
− u0 · v0

A2
0

]
(av + bu)

+ 2ψ1

[
|v0|2

A2
0

− α2 |v|2

A2

]
au

+ 2ψ1

[
|u0|2

A2
0

− α2 |u|2

A2

]
bv

+ 2ψ4
(â0 · u0)(â0 · v0)− (u0 · v0)

A2
0

(av + bu)

+ 2ψ4
|v0|2 − (â0 · v0)2

A2
0

au

+ 2ψ4
|u0|2 − (â0 · u0)2

A2
0

bv, (17)

where (a, b) = (1,−1), (0, 1), (−1, 0) for the displacements
x, y, z respectively. This provides an analytical expression
for the force which can be used in a gradient descent,
Newton-Raphson, or quasi-Newton minimization process.

The variation of total potential energy is a function of 3N
displacement coordinates where N is the number of free
nodes. To find the closed position of the leaflets given the
distributed forces and imposed displacements, we find the
configuration which minimizes the total energy by using the
BFGS (Broyden Fletcher Goldfarb Shanno) quasi-Newton
optimization process.

III. EXPERIMENTS

Our data consist of an intraoperative RT3DE trans-
esophageal full volume sequence of the left heart. The
RT3DE acquisition was performed using an iE33 Philips
console with a Philips X2-T Live probe (Philips Medi-
cal Systems, Bothell, WA). The RT3DE cube sizes were
208×208×224. The RT3DE probe was operated at fre-
quencies ranging from 3 to 5 MHz and frame rate of
50 Hz. The pixels’ spatial resolutions were respectively
0.666×0.657×0.580 mm or approximately 1.10 mm diag-
onal voxel resolution. A 7 breath-hold cycle acquisition
protocol was employed leading to a frame rate of close to 50
Hz. We performed automated valve and endocardial wall seg-
mentation as described in [13]. This was followed by expert
review and correction to edit out artifacts and to complete
any missing anatomical structures due to reverberation, self
obscuration of the valve, and limitations of the RT3DE field
of view. The positioning of the valve annulus, tether con-
nections, and papillary muscles were specified from visual
inspection of the RT3DE. The numerical parameter values
were specified as indicated in the previous section.

Benchmarking was performed using two RT3DE cases and
was carried out by computing absolute errors between (a)
the closed valve configuration predicted at systole from the
segmented open valve captured at diastole, and (b) the closed
valve segmented during systole. Manual adjustment of the
overall vertical translation of the predicted valve was made to
compensate for the mostly single axis translational motion of
the annulus, which is not considered in our model. Similarly,

compensation for the dilation of the annulus between dias-
tole and systole was performed based on empirical dilation
measurements reported in [15]. We found on average a mean
absolute error of 2.9 mm with std. dev. 2.6 mm for case 1
and 3.3 mm and 3.0 mm respectively for case 2.

Fig. 3 shows the convergence of the minimization process
to the computed closed configuration. Color coded areas
correspond the anterior (red) and posterior (blue) leaflets and
include sections of the attached primary chordae tendineae.
The green region includes the annulus as well as the lower
part of the atrium which remain static in the minimization
process. The RT3DE-based closed state simulations resulted
in physiological strains and plausible stresses: stretching as
measured by fractional area change averaged 39%. Mean
average Cauchy stresses for the posterior leaflet were 56
kPa circumferential and 146 kPa radial. The values were
respectively 68 kPa and 113 kPa for the anterior leaflet.
95th percentile stresses for the posterior leaflet were 209 kPa
circumferential and 534 kPa radial. The values were 284 kPa
and 430 kPa respectively for the anterior leaflet. Those values
are consistent with findings in other modeling and empirical
studies [7], [8], [12], [16].

IV. CONCLUSIONS

We describe a novel RT3DE-guided physics-based mod-
eling and simulation procedure to predict the stresses and
strains for a closed state MV from an open MV configu-
ration exploiting a static load analysis and optimization and
using realistic physiological load and hyperelastic anisotropic
forces. Testing with clinical data shows the ability to predict
stress/strain values that are consistent with prior findings.
This load analysis will allow surgeons to evaluate the quality
and predict the longevity of candidate procedures.
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