
 
 

 

  

Abstract—A framework for step-by-step personalization of a 
computational model of human atria is presented. Beginning with 
anatomical modeling based on CT or MRI data, next fiber 
structure is superimposed using a rule-based method. If available, 
late-enhancement-MRI images can be considered in order to 
mark fibrotic tissue. A first estimate of individual 
electrophysiology is gained from BSPM data solving the inverse 
problem of ECG. A final adjustment of electrophysiology is 
realized using intracardiac measurements. The framework is 
applied using several patient data. First clinical application will 
be computer assisted planning of RF-ablation for treatment of 
atrial flutter and atrial fibrillation. 

I. INTRODUCTION 
trial fibrillation (AF) is the most common arrhythmia in 
humans. Especially elderly people suffer from AF with a 

prevalence of 8% for persons above the age of 80 [1]. 
Sometimes AF can be treated successfully using drugs, but 
side effects reduce the quality of life significantly. 
Radiofrequency ablation (RF-ablation) is an option for 
curative therapy [2], [3]. Distinct lines in the atria are 
converted to necrotic tissue using a catheter and RF-power, 
thus blocking the spread of depolarization. Unfortunately, 
these procedures often take several hours in the so called “cath 
lab”, which is very stressful both for the patient and the 
clinician. In addition the success rate for long-term prevention 
from AF is only about 70% [2], [3]. Very often patients have 
to undergo the same procedure again after 3 months and for 
some of them it turns out to be a complete failure.  

Computational models of the heart have evolved to become 
an important tool for understanding several types of 
arrhythmias like AF [4]-[7], atrial flutter or ventricular 
fibrillation [8]-[11]. Also various genetic diseases leading to 
arrhythmias like Long-QT- or Short-QT-syndrome can be 
simulated successfully [12]. A solid comprehension of AF can 
be supported by tuning electrophysiological parameters like 
conduction velocity (CV) and by triggering extrasystoles from 
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various regions in a generalized model of the human heart [7].  
Consequently the next step is to adapt these computer 

models to the individual patient in order to guide and optimize 
the therapy. Only this way the gain of increased 
comprehension can be translated to a benefit for the patient.  

The most prominent efforts in this field are the optimization 
of RF-ablation in case of AF [13], [14] and the optimization of 
cardiac resynchronization therapy [15]-[18]. 

In this article a framework and workflow is suggested in 
order to adapt a generalized model of the human atria to the 
individual heart of a patient. This is meant to be a first step 
into the direction of an individual RF-ablation planning 
system, which is aiming at a distinct decrease of cath lab time 
and a significant increase in long-term success rate. 

II. ANATOMICAL MODELING 

A. Atrial Geometry 
Frequently CT or MRI data are acquired for patients 

suffering from AF. To create a geometrical model from these 
data, a segmentation procedure has to be carried out. Fully 
automatic segmentation of the atria is not “standard” since the 
atrial wall is thin and image contrast is small. A first approach 
is based on active contours where mean shaped balloons are 
positioned into the two cavities and adapted according to the 
most important variance of the atrial geometry [19], [20]. An 
improved approach seeks for all four pulmonary veins of the 
left atrium. A large interindividual variance of the orifices of 
the pulmonary veins is observed. A new method has become 
available lately that moves into the pulmonary veins starting in 
the atrial cavity and seeks for the circumference and 
bifurcations [21]. 

A comprehensive geometrical model of the atria is a 3D-
object that includes the thickness of the atrial wall. In most 
cases the epicardial surface of the atria is not clearly visible in 
the images. Until no better imaging data are available, the 
thickness of the atria has to be estimated using a rule-based 
procedure [22], [23]. Using an active shape model that 
includes labels for different areas of the atrial wall, the 
thickness can be adjusted according to the specific region. 
Thickness data can be adopted from anatomical atlases and 
autopsies [24], [25].  
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Finally an adequate mesh generator has to generate a 
tetrahedron or hexahedron mesh with smooth surfaces at the 
boundaries between different tissue classes. Fig. 1 shows the 
result of atrial segmentation based on clinical MRI data. 

 

 

Fig. 1: Anatomy of the atria of an individual patient 
segmented from MRI data. Colors denote different atrial tissue 
classes like e.g. terminal crest, pectinate muscle, left and right 
atrial appendage and Bachmann bundle. 

B. Atrial Fiber Direction 
The spread of depolarization is significantly different in 

fiber direction as compared to the transverse direction. 
Because of this, a comprehensive model of the atria must 
contain the local fiber direction, which is much more 
complicated as compared to the ventricles. A semiautomatic 
algorithm has been implemented, that is able to give a good 
estimate of the fiber structure throughout the atria after 22 
anatomical landmarks have been marked in the imaging data 
[26]. It is using recent detailed anatomical data [27], [28]. Fig. 
2 depicts the result after inclusion of the fiber direction. 

 

Fig. 2.  Fiber direction, included into the anatomy of the 
atria of an individual patient.  

C. Fibrotic Tissue and Late Enhancement MRI 
In recent years it became possible to acquire late 

enhancement MRI (LE-MRI) data of the human atria [29], 
[30]. This way, changes in tissue properties can be visualized 
that originate from a delayed wash out of a contrast agent. A 
plausible hypothesis claims that LE-MRI depicts fibrotic 
tissue, which is extremely relevant for further 
electrophysiological modeling. In addition, scars that originate 
from former ablation procedures might become visible. In the 
framework presented here, areas that give a large signal in LE-
MRI can be segmented and included into the geometrical 
model of the atria as an additional label [11]. 

III. MODELING ELECTROPHYSIOLOGY 

A. Cell and Tissue Models and Remodeling 
All electrophysiological models presented in this work are 

based on the atrial cell model of Courtemanche et al. (CRN) 
[31].  

In a first line, a cellular automaton is parametrized using the 
CRN model. Cells are coupled to form small patches of atrial 
tissue and the action potential is calculated and stored for 
various heart rates and interstimulus intervals. These data are 
used in a cellular automaton: if a “cell” is depolarized from a 
neighboring cell, it will follow the predefined slope of the 
action potential, and it will depolarize the neighboring cells 
with a certain predefined CV. This way, a realistic spread of 
depolarization for sinus rhythm can be calculated very fast. In 
case of AF the cellular automaton shows some deficiencies. 

In a second line, the complete electrophysiological cell 
model can be used for all “cells” at any time instant using the 
monodomain or even the bidomain scheme [32], [33]. This 
will deliver more realistic results with larger numerical effort. 

In addition in a third line, a phenomenological cell model 
was implemented: a Minimal Model (MM) [34], originally 
developed for ventricular cells, was adapted to the human 
atria. Instead of 12 ion channels that the CRN model takes into 
account, it only considers 3 ion channels and 4 state variables. 
It is possible to mimic the full CRN model in various 
situations with significantly reduced computational effort [35]. 

Patients undergoing an ablation procedure are very unlikely 
to show physiological action potentials. An atrial computer 
model aiming at being similar to a patient’s heart must take 
into account the most important remodeling processes [36]. In 
this project the cellular automaton, the CRN model and the 
Minimal Model have been adapted to remodeled atria [37]. 

Fig. 3 shows an example of a simulation of sinus rhythm 
using the anatomy of an individual patient’s heart. 

B. BSPM Measurements and Inverse Problem. 
Information about the electrophysiological properties of the 

patient’s heart can be gained non-invasively via Body Surface 
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Potential Mapping (BSPM). In this work an 80 channel system 
(Biosemi, Amsterdam) was employed. All electrodes are 
localized with a magnetic localizer (Polhemus). 

 

 
Fig. 3.  Simulation of sinus rhythm, using the anatomy of an 

individual patient’s atria including fiber distribution. 
Activation times are depicted color-coded. 

 
The first idea to derive electrophysiological data from 

BSPM is to solve the inverse problem. The additional effort is 
a thorax scan of the patient (CT or MRI), a segmentation 
procedure for the most important organs [38] and the 
calculation of the lead field matrix using e.g. FEM. Activation 
time imaging delivered promising results about the localization 
of the sinus node and the origin of extrasystoles [39], [40]. But 
unfortunately, the inverse problem of ECG is extremely ill-
posed for atrial sources and details are smeared out.  

Another promising approach is the successive forward 
calculation of various hypotheses about the spread of 
depolarization and the CV with a subsequent comparison of 
the simulated and the measured BSPMs [41]. This way quite 
accurate data about the interatrial conduction path and the 
global CV can be gained. 

Fig. 4 shows a comparison of a measured and a simulated 
BSPM temporal integral map after adjusting the interatrial 
conduction path and the CV to the individual patient. 

 

 
 
Fig. 4.  Comparison of a measured and a simulated BSPM 

integral map of the P-wave, after adjusting the interatrial 
conduction path and the CV to the individual patient. 

C. Intracardiac Measurements and Extraction of 
Electrophysiological  Properties 
Before any RF-ablation procedure in human atria can be 

started, a thorough investigation of the intracardiac electric 
signals using multi-electrode catheters must be carried out. 
These data can be employed to further adapt the computational 
model to the patient concerning electrophysiology. 

In this framework, a method is applied that allows for the 
detection of the local direction of a wavefront and the CV of a 
single heart beat using the data of a circular multi-electrode 
catheter [42]. These data can directly be incorporated into all 
three atrial models (cellular automaton, Minimal Model and 
CRN). In addition, a restitution curve can be measured by 
using a stimulation pulse train with accelerated frequency. 

Fig. 5 shows an example of detecting the wavefront 
direction from sinus rhythm and various stimulation sites. 

 

 
 

Fig. 5.  Results of the detection of wavefront directions from 
sinus rhythm (NSR) and two stimulation sites in coronary 
sinus (SC 7-8 and CS 3-4).  

 
In case that Complex Fractionated Atrial Electrograms 

(CFAEs, [43]) are observed, they can be classified 
automatically based on characteristic features and an image of 
the atria with an overlay of CFAE classes can be depicted [44], 
[45]. How precisely the information about areas with CFAEs 
has to be included into the electrophysiological models is not 
clear until now. This is a very important field of ongoing 
research [46]. Fig. 6 shows the result of a visualization of 
CFAE classes onto the anatomical model of the atria of a 
patient. 

IV. VALIDATION 

A. Validation of Geometry 
For the validation of the segmentation algorithms the 

standard methods of medical image processing have been 
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used: (a) the segmentation results have been compared to the 
original image data by experts and (b) a database of several 
manually segmented atria was created and compared to the 
automatically generated segmentation results using several 
measures of segmentation error (e.g. mean and maximum 
vortex to surface error [21]). 

 

 
Fig 6.  Visualization of CFAE classes as an overlay onto the 

anatomy of the atria of a patient. CFAE class 0: no irregular 
findings, CFAE class 1: periodic fractionated wave packages, 
CFAE class 2: irregular and frequent fractionated waves, 
CFAE class 3: continuous fractionated signals. 

 
A systematic validation of the estimated thickness of the 

atrial wall and the estimated fiber direction is not possible until 
today. The thorough inspection by clinical experts is the only 
option to “validate” the results. 

B. Validation of Electrophysiology 
A validation of the individualized electrophysiology is also 

a difficult task. Today we only see one option: First the 
electrophysiological parameters are adjusted to the patient with 
a set of signals (sinus rhythm, flutter, fibrillation, stimuli with 
known origin). Next a new and independent stimulus is given 
to the heart. The resulting spread of depolarization is both 
simulated with the individual heart model and measured with a 
circular multi-electrode catheter and - if possible - a BSPM. 
The measured and simulated bioelectric signals are compared. 
The heart model is assumed to be equal to the patient’s heart if 
the error is smaller than a predefined threshold.  

This thorough evaluation has only been carried out with one 
patient until now and the results are very promising. 
Endocardial electrograms could be predicted with acceptable 
accuracy [47]. 

V. DISCUSSION 
A framework to adapt a computational model of the heart to 

an individual patient was outlined. Methods for validation 
have been suggested. The validation of the segmentation 

procedure is straight forward. Methods to validate the 
electrophysiological model are difficult and not reported in the 
literature until now. A procedure to predict measured data 
resulting from well-defined stimuli that have not been used for 
the adaptation procedure is suggested.  

On the long run for the physician the clinical result is more 
important than the error between model and reality. The 
crucial question finally is: does the computer assisted planning 
of RF-ablation improve clinical outcome? 
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