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Abstract— The pelvic floor can be subjected to different
disorders, coming from a physiological change in the spatial
configuration of the organs of interest: the bladder, the rectum,
the uterus and the vagina. However, resort to surgery to replace
them is complicated to achieve. In order to support the decision
of the surgeon as to the invasive method to use for the patient,
the MoDyPe (Pelvis Dynamics Modeling) project was launched,
aiming at building a patient specific pelvic organ behavior.

Our approach consists in creating thick surfaces of hollow
organs, using periodic B-splines and offsets, then in controlling
their discretization and in exporting a hexahedral model to
provide input data for the study on the dynamics of the soft
bodies of interest.

From a segmentation step providing a dataset of 3D points, a
function is built to measure the bidirectional distance between
the surface and the data. It is minimized with an alternate
iterative Hoschek-like method, by updating the parametric map
and moving the control points. Several offsets of the base
surface are then created to build up the thickness of the organ.

I. INTRODUCTION

Information Technology modeling of organs remains a

difficult problem. This is due to the several factors that need

to be accounted for during the modeling like hollow organs,

soft tissues, and complex in vivo behaviors. This modeling

is important in several processes, such as simulating the

movement of organs or surgical planning.

The field of interest on which we have focused refers to the

pelvic floor and the following organs: the bladder, the rectum,

the uterus and the vagina. As a matter of fact, due to changes

in their spatial configuration, disorders can come forth,

like prolapse, cystocele and rectocele. Although surgery

can restore the balance of their initial layout, MoDyPe

project intends to develop a specific-patient decision support

software in order to evaluate the surgical gesture and the

invasive procedures to be used.

Some approaches have already been developed. How-

ever, either the method underestimates the importance of

geometric modeling by merging this field with physical

modeling [1], or the algorithm lacks accuracy due to an

unconstrained tetrahedrization of the model [2]. This latter

puts forward a mass-spring system to simulate the organs

behavior under stress. Although it leads to rapid results, the

generation of degenerate elements is inevitable, which affects

the accuracy of calculations. Other projects have investigated
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Fig. 1. Steps of MoDyPe process

the anatomical objects [3], but none of them has considered

the organs as hollow and thick-surfaced volume.

The approach proposed in this paper is implied into a

feedback loop, in between a segmentation step acquiring data

sets and a physical modeling step to simulate the organs

behaviors (calculations with finite elements).

B-splines [4] are used to reproduce more closely the

organs features (hollow and closed shape without sharp

edges). The continuous representation gives advantages: ease

to move on the surfaces, smooth and controllable shapes.

Our inputs come from physical measurements from static

MRI (ITK-SNAP, www.itksnap.org). But even though experts

supervise data acquisition, human action can induce a lack

of accuracy. Further to the potential presence of parasites,

an approximate approach is considered for stability of the

model. The construction of an organ consists of three main

stages: surface reconstruction of the outer layer from the

data, addition of a thickness on the organs by offsets and

hexaedrization of the hollow volumes to provide a mesh to

the input of the physical modeling process.

The global process of MoDyPe project is presented in a

first part. Then, the surface reconstruction is put forward,

followed by the offset formulation. For both sections, results

are discussed to show consistency of the developed methods.

II. A FEEDBACK-LOOP PROCESS

Our method is integrated in a process divided into four

modules. Each module interoperates with the others through

specific interfaces (Fig. 1).

From a static MRI of the patient, the first module takes

care of the segmentation that generates a set of 3D points.

They belong to the surface of the organs of interest. This step
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interacts directly with the geometric modeling by providing

the input data. The second module reconstructs the surfaces

of the outer membranes, and builds the thickness for each

organ (thanks to medical knowledge). A closed, hollow, and

thick-surfaced volume is then created and discretized in order

to provide a hexahedral mesh. The third module is physical

modeling. The mesh is retrieved and sought to replicate

the movements of organs under stress by determining the

underlying laws of behavior through simulations. A sequence

of images is produced by projecting the outputs of the simu-

lations in a sagittal plane. The characterization step realignes

and characterizes the simulated movements of organs and

compares the results with a ground-truth (dynamic MRI).

The feedback loop takes action if the characterization

step is not satisfied according to the consistency of results.

Two possible returns are available. A control of geometric

modeling is added after the simulations to assess the geo-

metric consistency of hexahedral elements, and thus to detect

the possible presence of degenerate elements (the study of

variation in the shape of hexahedron). Local operations of

decimation and refinement are then applied, to improve the

accuracy of the calculations and avoid erroneous results.

The second return is linked to the law of behavior which

is modified in case of inconclusive results, in terms of non

realistic movements.

This loop is repeated until the accuracy (criteria set by the

characterization step) is reached. It divides the process into

three distinct roles: segmentation and geometric modeling

are used to support the model, the physical modeling creates

a dynamic mesh of organs, and the realignment of the

characterization step monitors the results compliancy.

However, each module works independantly yet. Therefore

only geometric modeling work are put forward afterward.

III. SURFACE RECONSTRUCTION

In order to keep the advantages of the parametric ap-

proach [5]–[7], a B-spline formulation is used to reconstruct

the surface of the organs. The chosen optimization method

is an alternate iterative technique [8], [9], providing a com-

promise between complexity and accuracy. The base surface

is a k-order periodic B-spline generated from a semi-toroidal

surface to have Ck−2 continuity and therefore a “smooth”

shape for the closed surface.

Periodicity of a B-spline ensures tangent and curvature

continuity across the entire parametric domain. For a k-order

curve, the k − 1 first control points and parametric intervals

must be superimposed on the k− 1 last ones. This principle

is applicable to surfaces (surfaces also known as tori). This

property is taken into account in the surface formulation by

an alteration of the nodal vectors and the control network [3].

However, working on half the form only gives the same

results with less data (Fig. 2).

The f function characterizes the distance between the

parametric surface S and the data points {Ds}
N

s=0
. Let {Pi,j}

be the (n+1)× (m+1) control points of S in R
3 and let E

be the sampling of S (card(E) = M ) with a fixed uniform

parametric map. Let U and V be the vectors containing

(a) Half-torus from a 1-
genus torus

(b) Collar reduction (c) Degenerate torus
without collar

Fig. 2. Half-tori build with biperiodicity

the values of the parameterization (eg. the parametric pair

(u., v.)k will be associated to the kth sampling point).

The error function (1) is separated into two sub-functions

(sums of squares of distances) illustrated by Fig. 3. The first

sub-function fD→E , defined by (2), puts forward dissimi-

larity of D over the sampling E, and the second fE→D

characterizes dissimilarity of E over D:

f = fD→E(P,U, V ) + fE→D(P,U, V ) (1)

The sub-function fD→E associates each point of D with

its 0-order projection on S (the closest sampled point to the

datum). It is defined by :

fD→E(P,U, V ) =

N
∑

s=0

‖Ds − S((u., v.)⋆)‖
2
, (2)

with: ‖Ds − S((u., v.)⋆)‖
2
= min

j
‖Ds − S((u., v.)j)‖

2
.

In the same principle, the second sub-function fE→D

associates each sampled point to the closest datum.

The iterative minimization is based on the alternation of

two steps for each sub-function. The first step constructs f

and consists in updating the graph of connections (0-order

projections) between the sets D and E. A gradient descent

with optimal step method is then applied to reduce f . Let

fc and fc+1 be the f values at iterations c and c + 1. The

descent step ac at the cth iteration is calculated such that

fc+1(P − ac∇
P fc, U, V ) is minimal.

A. Assets and drawbacks

This formulation of f intends to avoid minimization

problems for complex forms (e.g. variations of curvature,

excavations). This produces a “smooth” shape without sharp

edges. Furthermore, working on one half of the torus prevents

unnecessary overlapping control points that would occur with

a full one (creating a stack of surfaces). After fitting, the
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discretization of S is in a good configuration to work on the

thickness of the organs (Section IV).

However, the initialization of the base surface is located

at the center of the cloud of points. The initial surface

does not facilitate the fitting process. Besides, the graph

of connections is defined globally. Computation times are

mainly related to the heuristic used in the first step for the

matching between the sampling and the data.

B. Results and discussions

The simulations were performed with an Intel Core i7

M620 (2.67 GHz, 4 GB RAM). The surface reconstruction

explained in section III is applied to the four organs. The

numerical results below are concerning the bladder. Its data

file include 45000 points and its oriented bounding box is

107×69×74 mm. The initial parametric surface is a 4-order

B-spline in both directions and has a sampling cardinality

similar to the dataset cardinality.

Table I references computation time (min) needed for

smoothing the surface of a bladder and the Mean Square

Error (mm). The MSE has an initial value of 13.75. Several

dimensions of the control network are compared. The process

was stopped after 5, 10 and 15 iterations.

The results in Table I put forward the decrease of the MSE

during iterations. The increase of the computation time is

related to the larger control network. However, it is conside-

red in the steepest descent step. Most of the calculations is

used for the cost-consuming distances evaluation step. We

plan to explore parallel implementation of our algorithm.

This will dramatically pull down the duration, as distance

computations of couple of points are not self-dependent. A

Quadtree approach to obtain the neighborhood data points

should reduce the computation times as well. Furthermore,

we can put forward that we get MSE values smaller than

the 1 mm acquisition accuracy coming from MRI resolution.

Finally, the method is sensitive to the initial location of the

surface, like any iterative method (risk of network overlays

when the control points are moved when the initialization

is too far from the form to achieve). The use of PCA to

describe the direction of the maximum variance will facilitate

the initial positioning of control points.

The bladder surface computation results are similar to

those obtained with the other organs.

Fig. 4(a), 4(b) and 4(c) illustrate the four pelvic organs

after 15 iterations. Once this reconstruction step is achieved,

we use this surface to define thick organs by offsetting.

TABLE I

SURFACE RECONSTRUCTION PROCESS OF A BLADDER, WITH THE

COMPUTATION TIME (MIN) AND THE MSE (MM)

Control network dimensions
11× 19 13× 23 15× 27

time MSE time MSE time MSE

5 iterations 10.35 2.57 9.7 1.61 11.79 1.05

10 iterations 19.87 1.02 20.1 0.84 23.9 0.76

15 iterations 29.77 0.88 30.57 0.73 33.6 0.67

(a) Bladder (b) Rectum (c) Uterus/vagina

Fig. 4. Reconstruction for 15 iterations with 13× 23 control network and
a sampling cardinality similar to the dataset cardinality

IV. THICK SURFACES BY OFFSETS

The surface reconstruction process employed in Section

III enables us to work on the thickness of the organs thanks

to the offset formulation, as in [10] and [11]. This thickness

is controlled by four distincts parameters: an offset-direction

governed by the oriented normal to the surface (towards the

inside or the outside of the organ), an offset-distance d (real

thickness of the organ membrane), the number of layers Nlay

in the thickness and a coefficient a for the layer distribution.

The offset So of a surface S at a distance d of S, as

in (3), is constructed in three stages. The first one consists

in discretizing S. Then, the normal vectors at the discrete

points of S are calculated. Finally, an interpolation of the

offset-cloud creates a parametric offset-surface So, as:

So(u, v) = S(u, v) + d
∂S
∂u

× ∂S
∂v

∥

∥

∂S
∂u

× ∂S
∂v

∥

∥

(3)

The creation of a single offset-surface would not be

enough to achieve sufficient accuracy in the calculations.

Let {hi}
Nlay

i=1
be all the thicknesses considered. Each value

corresponds to a distance from the base surface S. The

establishment of a “distancer” gives a geometric progression

of these distances, considering a smaller thickness at the ends

of the membrane (the outermost and the innermost layers)

where the deformations are more important. A distribution

control is possible with the parameter a. The more a tends

to 0, the more the surface layers will be located next to the

innermost and the outermost layers. A contrario, if a tends

to 1 the layers will go towards the average layer.

In the case where Nlay is odd, we have:














hi =
1

2

∑i

j=1
aj

∑

Nlay−1

2

k=1
ak

d

hNlay−i−1 = d− hi

∀i =

{

0, · · · ,
Nlay − 1

2

}

(4)

The same principle is used for an even number of layers

(paying attention near the center of the thick membrane).

A change of scale replaces a within the interval [0, 1] for

convenience. With the distancer, a set of surfaces {Si}
Nlay

i=2

is created, with S1 = S. We have, ∀i ∈ {1, . . . , Nlay − 1}:

Si+1(u, v) = Si(u, v) + hi

∂Si

∂u
× ∂Si

∂v
∥

∥

∂Si

∂u
× ∂Si

∂v

∥

∥

(5)

For a fixed thickness, a uniform discretization is applied.

However, we have to ensure an immediate correspondence

between the hexahedral elements from a layer to another.
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(a) Uniform distribution: a = 0.5 (b) Towards extremities: a = 0.3

Fig. 5. Influence of the parameter a (GMSH viewer, geuz.org/gmsh)

A. Assets and drawbacks

The offset construction process can get more realistic

organs by considering their non-negligible thickness. But the

problem of offset methods is due to self-intersections [10].

Overlappings of the surface are created when the absolute

value of the offset distance exceeds the minimum radius

of curvature in the concave regions. From the shape of our

organs, global self-intersections are not met. But since we get

the offsets from an interpolation, the sampling features like

the curvatures are not taken into account during the fitting

process to prevent local cranklings.

B. Results and discussions

Due to the bladder dimensions, the chosen thickness is 5
mm [12]. The offset-direction is towards the inside, since

the external hull is built. The influence of the stretching

parameter a is illustrated by Fig. 5(a) and 5(b). With a = 0.5,

we get the same thickness for each layer; with a = 0.3, the

layers are pushed towards the inner and the outer boundaries

of the membrane.

However, the values of the other parameters a and Nlay

are not adjustable according to a heuristic method for the

moment. The value of Nlay could be related to the ouput

constraint requiring regular mesh elements. Therefore a

sampling-based heuristic could be applied in 3D to pro-

vide nearly cubic elements. Concerning the coefficient a,

a sensitivity analysis could be performed to quantify its

influence on the results. We could check if the calculations by

finite elements would be more accurate with thinner surfaces

located next to a border with a different density area.

The presence of local cranklings is observed (Fig. 6). It

produces degenerate elements that will provide erroneous

results. An idea would be to apply the surface reconstruction

process on the offset-sampling, that would guarantee a Ck−2

continuity to the offset.

(a) Rough region of a bladder (b) Internal self-intersection

Fig. 6. A rough discretization of a bladder: (a) outer layer, (b) self-
intersections to be corrected (GMSH viewer)

V. CONCLUSIONS AND FUTURE WORKS

We have presented a process to construct organs of the

pelvic region with a thick surface. The periodic base surface

is created from a degenerate half-torus, avoiding the pro-

blems of singularities obtained with uniform nodal vectors.

The non-negligible thickness of the organs is taken into

account to improve the realism of the reconstructions, and

will highlight the density difference between the inside and

the outside of the organs.

The addition of a dynamic insertion of control points

in the iterative minimization process should lead to a bet-

ter decreased MSE. Besides, the validation of the updated

parametric map (Section III) requires a comparison with

a projection method as in [9]. Even though the distances

evaluation step is cost-consuming, different solutions could

be performed to decrease the duration thanks to algorithmic

methods, like PCA or Quadtree. Regarding offsets, the local

self-intersections must be managed. But a solution would be

to apply our surface reconstruction process on the offset-

samplings. A heuristic to determine the parameters values

Nlay and a has to be defined and applied yet.

The use of this geometric model for the optimization of

FEM calculations for the simulations and the characterization

module is a work in progress.
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