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Abstract— This paper presents two new algorithms based
on the Extended Kalman Filter (EKF) for tracking the pa-
rameters of single dynamic magnetoencephalography (MEG)
dipole sources. We assume a dynamic MEG dipole source with
possibly both time-varying location and dipole orientation. The
standard EKF-based tracking algorithm performs well under
the assumption that the dipole source components vary in time
as a Gauss-Markov process, provided that the background
noise is temporally stationary. We propose a Projected-EKF
algorithm that is adapted to a more forgiving condition where
the background noise is temporally nonstationary, as well
as a Projected-GLS-EKF algorithm that works even more
universally, when the dipole components vary arbitrarily from
one sample to the next.

I. INTRODUCTION

Magnetoencephalography (MEG) is the measurement of
magnetic fields resulting from the ensemble of neural ac-
tivities in the human brain. It is a powerful non-invasive
tool for investigating the mechanisms of brain-controlled
physical movements, cognitive processes, and neurological
and psychiatric disorders [1]. Researchers have obtained
useful information by localizing the MEG signal sources
related to such disorders and directly treated patients in the
specific region of the brain that is abnormal. MEG signals are
typically measured by an array of sensors, and the signals of
interest are measured in the presence of spatially correlated
interference due to the presence of background brain activity
[2] [5] [6] [7].

Most prior work has focused on situations where the MEG
sources and dipole moments are fixed. Some exceptions
include [8], which studies sources with fixed locations but
time-varying moments, and [9], where both are allowed to
vary, but a separate estimation step is conducted at each
time sample to determine the parameters. The standard
Extended Kalman Filter (EKF) has been applied to tracking
and estimating electroencephalography (EEG) and/or MEG
dipole sources in [10] [11] [12]. The standard EKF works
when the following assumptions are satisfied:

• Assumption I: the location of the MEG dipole source
varies in time as a Gauss-Markov process;

• Assumption II: the dipole moment components of the
MEG dipole source vary in time as a Gauss-Markov
process;

• Assumption III: the interference is temporally station-
ary.
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In this paper, we present two new EKF-based algorithms to
relax the last two assumptions. The first approach is called
the Projected-EKF, and it reduces the effect of temporally
nonstationary noise by means of a denoising projection. The
second algorithm couples a generalized least-squares (GLS)
estimator of the dipole moments together with the Projected-
EKF to eliminate the need for Assumption II.

II. DATA MODEL

A. Dipole Source Model

The primary current distribution corresponding to an MEG
signal source is modeled as an equivalent current dipole. A
dipole source is modeled with a vector, comprised of the
dipole moment in the x-, y-, and z-directions. Let ps be
the dipole moment of the signal-of-interest (SOI): ps(t) =
[psx(t), psy (t), psz (t)]T . The location of the dipole source
at time t is defined by the three-dimensional rectangular
coordinate (xs(t), ys(t), zs(t)). The location of the jth source
of interference is defined by its coordinate (xij , yij , zij ) with
dipole moment pij .

B. MEG Signal Model

In the control state, the MEG signal received by each
sensor only contains interference and background noise. In
the task state, a stimulus-evoked SOI is generated and the
signal received is the sum of the SOI and background noise.
We assume a single SOI and J sources of interference. The
outputs from the mth sensor at time t in the two states are
modeled as

Control State (t ∈ Tcontrol) :

xm(t) =

J∑
j=1

aim,jpij (t) + nm(t)

Task State (t ∈ Ttask) :

xm(t) = asm(β(t))ps(t)︸ ︷︷ ︸
SOI term

+

J∑
j=1

aim,jpij (t) + nm(t)

(1)

where as,m(β(t)) and aim,j
are the respective 1 × 3

lead field vectors of the SOI and the jth interference
source, β(t) denotes the time-varying coordinate parameters
(xs(t), ys(t), zs(t)), and nm(t) denotes the sensor noise. The
outputs from the M sensors in the control and task states are
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stacked in a column vector:

X(t) =

J∑
j=1

Aijpij (t) + n(t) (2)

XC(t) = As(β(t))ps(t)︸ ︷︷ ︸
SOI term

+

J∑
j=1

Aijpij (t) + n(t) . (3)

C. Three-component Vector Sensor

It is well known that the radial component of a dipole
source is not measurable using radially oriented sensors [2],
because an MEG sensor can only receive signals that are
orthogonal to its orientation. Here, we propose a three-
component vector sensor in order to fully measure the
magnetic field. The three-component vector sensor is nothing
but a sensor group consisting of three separate sensors
oriented orthogonally at the same location. Therefore, there
are 3M sensors distributed at M sensor locations. In recent
decades, extensive research has been conducted on the theory
and design of vector sensors. Vector sensors have been
applied for electromagnetic source localization and other
electromagnetic-field applications [3] [4]. However, vector
sensor for MEG measurements has not been developed yet.

D. Model of the Dynamic SOI Dipole Source

We define s(t) as the state vector of the SOI
dipole source at time t: s(t) = [sr(t),pT

s (t)]T ,
where sr(t) is [xs(t), ys(t), zs(t), vxs

(t), vys
(t), vzs(t)], and

[vxs
(t), vys

(t), vzs(t)] is the velocity of the SOI dipole
source. Our task is to estimate this state vector at each time
instant. A random walk model [13] on the velocities is used
to model the motion of MEG SOI dipole sources. To keep the
estimated motion within a reasonable region [14], we set up
K confining points on the imaginary human skull to generate
a virtual potential field that will restrict its movement within
the brain. The force generated by the kth confining point is
written as a 3× 1 vector:

Fk(t) =
−Fcr

d3s(β(t))

 xs(t)− xck
ys(t)− yck
zs(t)− zck

 , (4)

where Fcr is a designed parameter that determines the overall
strength of the repelling force, ds is the distance between
the SOI dipole source and the kth confining point, and
(xck , yck , zck) is the coordinate of the kth confining point.
The resulting repelling force exerted on the SOI dipole
source is the sum of the repelling forces from the K confining
points, denoted as Fr(t) = [Frx(t), Fry (t), Frz (t)]T .

Combining the random walk model and the repelling force
yields the dynamic model of the SOI dipole source’s location
and velocity [14]:

sr(t) = Λsr(t− 1) +

[
0.5Fr(t− 1)

Fr(t− 1)

]
+

[
03×1
σv(t)

]
(5)

where Λ =

[
I3 I3
03 I3

]
is a constant state transition matrix

and σv(t) = [σx(t), σy(t), σz(t)] is the Gaussian perturba-
tion vector on the SOI dipole source velocity.

We also assume that the dipole components on the x-,
y-, z-directions satisfy the Gauss-Markov model, although
this information is not exploited by the Projected-GLS-EKF
algorithm:

ps(t) = ps(t− 1) + σp(t), (6)

where σp(t) is the Gaussian perturbation vector on ps(t−1).

III. TRACKING ALGORITHMS

A. State-space Model

Combining (5) and (6) yields the state dynamics equation

s(t) = f(s(t− 1)) + u(t), (7)

which is a nonlinear function of s(t−1). The driving term is
zero-mean, white Gaussian noise with known covariance Q.
The MEG measurement is written as a nonlinear function of
s(t):

X(t) = h(s(t)) + w(t), (8)

where w(t) is the background noise.

B. Standard EKF

The standard EKF algorithm requires all three of the as-
sumptions put forth in the end of Section I. The background
noise w(t) is assumed to be temporally stationary with a
covariance matrix W estimated from the control state:

W =
1

NC
{XC − E[XC ]}{XC − E[XC ]}T (9)

where XC is the control state data set and NC is the number
of samples in the control state. The EKF also requires
linearized versions of the state transition and observation
functions:

Gt,t−1 =
∂f(ŝ(t− 1|t− 1))

∂ŝ(t− 1|t− 1)
(10)

Ht,t−1 =
∂h(ŝ(t|t− 1))

∂ŝ(t|t− 1)
(11)

The standard EKF recursion is defined as follows:

ŝ(t|t− 1) = f(ŝ(t− 1|t− 1))

Rt|t−1 = Gt,t−1Rt−1|t−1G
T
t,t−1 + Q

Kt = Rt|t−1H
T
t,t−1[Ht,t−1Rt|t−1H

T
t,t−1 + W]−1

ŝ(t|t) = ŝ(t|t− 1) + Kt[X(t)− h(ŝ(t|t− 1))]

Rt|t = (I9 −KtHt,t−1)Rt|t−1 ,

where K(t) is the Kalman gain, and Rt|t−1,Rt|t are the
predicted and filtered error covariance matrices.

C. Proposed Algorithm 1: Projected-EKF

If Assumption III does not hold, we are no longer able
to estimate the covariance of the background noise by
calculating W. To address this problem, we choose to project
out the interference prior to application of the EKF. To do
this, we define D̂ to be the eigenvectors of XC corresponding
to the smallest eigenvalues. The choice of the dimension
of D̂ is a design parameter whose choice can be based on
standard techniques for model-order determination.
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Using D̂ to project the task state data set, we have:

D̂TX(t) = D̂TAs(β(t))ps(t) +

J∑
j=1

D̂TAipi(t)︸ ︷︷ ︸
≈0

+D̂Tn(t)

≈ D̂TAs(β(t))ps(t) + D̂Tn(t).
(12)

We then apply the EKF on this projected MEG measurement.
The different forms of the Kalman gain matrix and the
estimate update are:

Kt = Rt|t−1H
T
t,t−1D̂[D̂THt,t−1Rt|t−1H

T
t,t−1D̂

+Σ]−1

ŝ(t|t) = ŝ(t|t− 1) + KtD̂
T [X(t)− h(ŝ(t|t− 1))]

Rt|t = (I9 −KtD̂
THt,t−1)Rt|t−1

where Σ is the covariance of the projected XC . We refer to
this algorithm as the Projected-EKF.

D. Proposed Algorithm 2: Projected-GLS-EKF

If the dynamic dipole moment model of Assumption II
does not hold, then the above EKF approaches may not
perform well. To overcome this problem, we present another
algorithm here that exploits the fact that the data is linear in
the dipole moments to estimate them at each time step.

After projecting out the interference, the following GLS
cost function can be used to estimate ps(t) directly:

C(p̂st) =

N∑
t=1

[X(t)−As(β(t))p̂st ]
T D̂Σ−1D̂T

· [X(t)−As(β(t))p̂st ].

(13)

The estimate of ps(t) is easily obtained as

p̂st = [AT
s (β(t))ΓAs(β(t))]−1As(β(t))T ΓX(t). (14)

where Γ = D̂Σ−1D̂T . Because the components in the x-, y-,
z-directions are no longer treated as part of the state vector,
the state vector is reduced to simply sr(t).

The modified linearizations to the state transition and
observation functions are

Grt,t−1
=
∂fr(ŝr(t− 1|t− 1))

∂ŝr(t− 1|t− 1)

Hrt,t−1
=
∂hr(ŝr(t|t− 1), p̂st|t−1

)

∂ŝr(t|t− 1)
,

(15)

where fr denotes the state transition function of sr, and
hr(ŝr(t|t− 1), p̂st|t−1

) equals

Ast|t−1
[AT

st|t−1
ΓAst|t−1

]−1AT
st|t−1

ΓX(t)︸ ︷︷ ︸
p̂st|t−1

t ∈ Ttask,

(16)
where Ast|t−1

denotes As(β(t|t− 1)), and β(t|t− 1) is the
predicted SOI dipole source location. The Projected-GLS-

EKF algorithm is the implemented as follows:

ŝr(t|t− 1) = fr(ŝr(t− 1|t− 1))

Rrt|t−1
= Grt,t−1Rrt−1|t−1

GT
rt,t−1

+ Qr

p̂st|t−1
= [AT

st|t−1
ΓAst|t−1

]−1AT
st|t−1

ΓX(t)

Kt = Rrt|t−1
HT

rt,t−1
D̂

·[D̂THrt,t−1
Rrt|t−1

HT
rt,t−1

D̂ + Σ]−1

ŝr(t|t) = ŝr(t|t− 1) + KtD̂
T [X(t)− hr(t|t− 1)]

Rrt|t = (I6 −KtD̂
THrt,t−1

)Rrt|t−1

p̂st|t = [AT
st|t

ΓAst|t ]
−1AT

st|t
ΓX(t) ,

where Qr is the covariance of perturbation on sr(t), and
hr(ŝ(t|t − 1), p̂st|t−1

) is replaced with hr(t|t − 1) for
simplicity.

IV. SIMULATION RESULTS

In our simulation, an 180-channel (60 vector sensors)
MEG measurement system is employed. The number of
interference sources is set to 4, and they are randomly
distributed on the surface of the brain. The control and task
states both have 200 samples. We evaluate the performance
of the three algorithms (two proposed algorithms plus the
regular EKF) by simulating the tracking and estimation pro-
cess in three different simulated scenarios. In these scenarios,
the designed Signal to Interference plus Noise Ratio (SINR)
is as low as 0dB.

In Scenario I, the MEG background noise is temporally
stationary. The position, velocity, and dipole components of
the SOI dipole source all vary according to the state-space
model defined in Section III. Fig. 1 shows the tracking results
of the three algorithms. There is no significant difference
in the performance of these algorithms. In Scenario II, the
MEG background noise is temporally nonstationary, and the
interference changes from the control state to the task state.
The position, velocity, and the SOI dipole components of
the SOI source also vary according to the state-space model.
Fig. 2 shows the tracking results of the three algorithms
in Scenario II, in which the performance of regular EKF
is inferior to the other two algorithms. In Scenario III, we
keep the nonstationary background noise in Scenario II, and
the position and the velocity of the SOI dipole source vary
according to (5). However, instead of obeying the dynamic
model, the dipole components vary randomly from sample
to sample. The standard EKF fails in this scenario, and while
the Projected-EKF works for some period of time, we see in
Fig. 3 that it eventually diverges from the true track. On the
other hand, the Projected-GLS-EKF works throughout the
entire data collection.

V. CONCLUSIONS

We have proposed two new algorithms based on the
EKF to track single dynamic MEG dipole sources. The first
algorithm combines the EKF with a projection that uses
control-state data to filter out the background noise prior
to application of the EKF. This helps eliminate the effect of

4367



−5
0

5
10

15
20

x 10−3

0.03
0.031

0.032
0.033

0.034

0.035
0.036
0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

0.06

 

x (m)y (m)
 

z 
(m

)

True track
Regular EKF
Projected−EKF
Projected−GLS−EKF
Initial guess

Fig. 1. Tracking results in Scenario I

−4

−2

0

2

4

x 10−3

0.029
0.03

0.031
0.032

0.033
0.034

0.035
0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

 

x (m)y (m)
 

z 
(m

)

True track
Regular EKF
Projected−EKF
Projected−GLS−EKF
Initial guess

Fig. 2. Tracking results in Scenario II

any nonstationarity present in the data before it can impact
the tracking performance. The second algorithm exploits the
fact that the model depends linearly on the dipole moment,
allowing the moment parameters to be estimated in closed-
form at each time sample. This reduces the dimension of
the state space, and removes any requirement for modeling
the time evolution of the dipole moment. Our simulation
results demonstrate the benefits associated with these two
algorithms. However, when the dipole components of the
SOI satisfy (6), the projected-EKF is slightly better than the
GLS-Projected-EKF since the GLS method does not exploit
the Gauss-Markov model.
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