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Abstract—In this paper, we describe an application of hidden 

Markov models (HMMs) to the problem of time-locating 

specific events in normal gait movement patterns. The use of 

HMMs in this paper is mainly related to the opportunity they 

offer to segment gait data collected at different walking speeds 

and inclinations of the walking surface. A simple four-state left-

right HMM is trained on a dataset of signals collected from a 

mono-axial gyro during treadmill walking trials performed at 

different speed and incline values. The gyro is mounted at the 

foot instep, with its sensitivity axis oriented in the medio-lateral 

direction. A rule based method applied to gyro signals is used 

for data annotation. Sensitivity and specificity of phase 

classification detection higher than 95% are obtained. The 

estimation accuracy of heel strike, flat foot, heel off and toe off 

events is about 35 ms on average. 

I. INTRODUCTION 

HE development of wearable sensor systems is an active 

research area in several fields including, among others, 

health care, physical medicine and rehabilitation, sport 

training. In-body motion sensors, such as gyros and 

accelerometers, are by far the most common choice to date 

for implementing wearable sensor systems applied to 

analysis and monitoring of human movement. 

Beside the development of filtering algorithms and sensor 

fusion techniques for accurate measurement of human 

motion such as joint angle, body segment position and 

orientation in the three-dimensional space, other research 

directions concern the development of computational 

methods [1], to accomplish either automatic recognition of 

human activity [2] or walking feature assessment [3, 4], 

condition classification [5] and gait phase detection [6]. In 

this paper, we propose a statistical technique based on 

hidden Markov models (HMMs) for automatic segmentation 

of human gait using inertial sensor data. 

Because of the role played by walking in human activities 

of daily living, evaluation of temporal and spatial parameters 

during walking is considered of the greatest importance in 

the clinical practice, e.g., to quantify improvement resulting 

from medical interventions, or to predict subsequent events, 

such as falls. The term gait is used to describe the way of 

walking and consists of consecutive gait cycles [7]. During 
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each gait cycle a sequence of key events, referred to as 

temporal parameters, can be used to specify the transition 

from one gait phase to another. The key events occur at 

specific temporal locations in the gait motion pattern. 

 Many different sensor configurations and models for 

temporal parameter extraction have been used so far for gait 

segmentation in humans. Inertial sensors, accelerometers [8] 

and gyros, are attractive in this regard, because, since they 

provide movement data directly, the key events can be 

detected by analyzing patterns in the sensor data. 

 In [9], a mono-axial gyro placed on the thigh is used to 

estimate stride time, stride length, and walking speed. Using 

a gyro attached to both shanks and a thigh gait temporal 

parameters and other information such as stride length can be 

estimated [4]; a simple inverted-pendulum biomechanical 

model of the lower limb is formulated, and a wavelet-based 

method is proposed for signal feature detection. 

In our previous work [3], a rule-based method is devised 

to determine four gait events (heel strike, flat foot, heel off, 

toe off), using a sensor unit composed of a mono-axial gyro 

and a bi-axial accelerometer fastened to the foot instep. 

While the gyro is used to extract the temporal parameters, 

the accelerometer is used to estimate stride length and 

inclination of the walking surface by strap-down integration.  

Another approach is to extract gait parameters without 

calculating angle and position. Hidden Markov models 

(HMMs) – a stochastic pattern recognition technique that has 

been widely used in computer vision research for gesture 

recognition [10] and human movement analysis [11] – can be 

used to separate the movement into strides, as first proposed 

in [12] and further pursued in [6, 13]. 

The application described in this paper bears some 

similarity to these latter contributions. Our motivation to 

investigate HMMs for gait data segmentation lies in our 

current studies on automatic methods of human physical 

activity classification [14]. We are interested in merging two 

apparently distinct tasks a wearable sensor system would 

jointly fulfill: activity classification and estimation of 

parameters for the particular classified activity. In this sense, 

the main advantage of HMMs as classification tools can be 

seen in the simultaneous segmentation and classification 

process of sequential data [12]. In this paper, we introduce a 

HMM for normal gait, valid for a range of walking speeds 

and inclinations of the walking surface. While this model 

shall be considered in the future together with other models, 

valid for activities such as, e.g., upstairs/downstairs walking, 
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cycling, or static postures and used in a hierarchical 

approach to Markov modeling, e.g., [15], we limit ourselves 

in this paper to test the performance of the HMM as a 

method useful to extract temporal parameters of normal gait.   

II. MATERIALS AND METHODS 

A. Dataset 

 The dataset used for HMM training, validation and testing 

was extracted from the dataset we used for carrying the 

research described in [3]. For the purpose of this paper, three 

healthy subjects performed two-minute trials of treadmill 

walking, at seven different speeds (from 3 to 6 km/h with 0.5 

km/h steps), and four different inclines (0%, 5%, 10%, 15%). 

Signals from a foot-mounted mono-axial gyro with the 

sensitivity axis oriented in the medial-lateral direction were 

sampled at 200 Hz and low-pass filtered at 15 Hz using a 

forward-backward second-order Butterworth filter. Data 

from the gait cycles inside the interval [50 110] s of each 

trial were retained for statistical processing. 

B. Hidden Markov Models for gait segmentation  

 A typical plot of foot-mounted gyro signals from our 

dataset is shown in Fig. 1. Two negative polarity humps 

(clockwise foot rotations as seen from a lateral view) are 

separated by a sort of signal plateau, when the foot is almost 

steady at zero angular velocity; the second negative polarity 

hump is followed by a positive polarity hump 

(counterclockwise rotation). This pattern of humps and 

plateaus is quite stable and repeats itself indefinitely during 

gait. Four gait phases, or states in the HMM language, are 

identified: phase S1, from THS to TFF; phase S2, from TFF to 

THO; phase S3, from THO to TTO; phase S4, from TTO to THS of 

the next stride.  

We assume the following rules for defining the key events 

TFF, THO, TTO and THS. The transition S1–S2 (flat foot, FF) 

occurs at time TFF, when the following condition on the 

measured angular velocity k: 

FFk                    (1) 

is verified (FF is a given threshold value, FF = 50 °/s). The 

transition S2–S3 (heel off, HO) occurs at time THO, when the 

condition: 

HOk                    (2) 

is verified (HO is a given threshold value, HO = 50 °/s). The 

transition S3–S4 (toe off, TO) is assumed to occur at time TTO, 

when the signal changes sign going from the negative 

polarity pulse to the positive polarity pulse. Although the 

foot is assumed to take off at the time instant when the 

angular velocity reaches the maximum value in the clockwise 

direction in [3], it is also known that the toe off detection is 

anticipated of about 35 ms as compared with the indication 

provided by footswitches. We choose the time instant TTO 

when the angular velocity goes to zero before turning into 

the opposite direction, Fig. 1. 

Finally, the transition S4–S1(heel strike, HS) occurs at time 

THS, which takes place just before the peak value of the first 

negative polarity hump, at the time instant when the absolute 

difference between the filtered and unfiltered gyro signal 

takes the maximum value, see Fig. 1 [3, 4, 16]. 

We assume that the gyro signals are modeled by a HHM 

with a finite number Q of states Si (Q = 4). The time 

evolution of the Markov chain is ruled by the Q-dimensional 

prior probability vector π, whose elements πi give the 

probability that the chain occupies the state Si at the initial 

time t0:  

   QiStX inj ,...,1,Pr          (3) 

and by the Q Q matrix A (the transition probability matrix,  

TPM), whose elements aij give the transition probabilities 

from the state Si at time tn to the state Sj at time tn+1: 
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Each gait phase can only be observed through a set of raw 

sensor signals, the gyro signal in the present case. In other 

terms, the states are hidden and only a second-level process 

is actually observable. The observable outputs zn = z(tn) are 

called emissions, and can be modeled using discrete or 

continuous random variables. In this paper, we opt for a 

continuous approach, by associating a univariate Gaussian 

probability density function (pdf) to each state. The i-th 

component of the emission vector b = [b1,…,bQ] gives the 

Gaussian pdf associated to the i-th state: 

   QiStXzNb iniinj ,...,1,,| 2       (5) 

with mean value i and standard deviation i. The HMM 

model is captured by the parameter set  = (, A, b). Given 

an observation sequence  Nzzz ,...,, 10Z  and the 

parameter set λ, learning/inference problems can be solved 

using few powerful algorithms, i.e., the forward-backward 

algorithm, which allows computing the likelihood L(Z, λ), 

the Baum-Welch algorithm, which performs the maximum 

likelihood estimation of model parameters; of main interest 

in this paper, the Viterbi algorithm, which is widely used to 

 
Fig. 1: Plot of foot-mounted gyro signal. Toe-off (■) and heel strike 

() obtained from applying the rule-based detection algorithm, are 

indicated for three consecutive strides. The state sequence S1-S2-S3-S4 

of a particular stride is made explicit. 
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estimate the most likely sequence of states traced by the 

HMM [17]. 

We specify a four-state left-right HMM, as shown in Fig. 

2. Skips are not allowed with this architecture. No attempt is 

made here to consider the number of states as a parameter to 

be optimized during cross-validation, as done, e.g., in [6, 

12]. In normal gait, the state transitions are only self-

transitions, or transitions between adjacent gait phases. In 

other words, the TPM must have the following form: 
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The diagonal elements represent the probabilities of self-

transitions in gait phases, and the other non-zero elements 

indicate the transition probabilities between non-adjacent 

gait phases; the element a41 states the gait cyclical nature. 

We remark that the HMM structure and the underlying 

definition of gait phases is instrumental to the motion 

patterns recorded by the gyro in our sensing configuration; it 

is not consistent with the suggestion by, e.g., [7], who 

divides the gait stride in eight phases: initial contact, loading 

response, mid-stance, terminal stance, pre-swing (stance); 

initial swing, mid-swing, terminal swing (swing). Roughly, 

S1 embraces initial contact, loading response and mid-stance, 

together with S2, whose transition to S3 indicates the 

transition from mid-stance to terminal stance. Together with 

terminal stance, S3 embraces the pre-swing phase, while 

initial swing, mid-swing and terminal swing all collapse in 

phase S4.  

C. Training and validation  

 A critical element that may influence the HMM training is 

the large number of parameters generally present in . 

Moreover, the HMM maximum likelihood estimation 

problem is not convex: careful parameter initialization may 

thus help circumventing the problem of local maxima 

existing in L(Z,λ). The availability of a labeled training set 

comes to one’s rescue in this regard. Labeling of observation 

sequences Z by label vectors Y requires the key event 

identification in the gyro signals, which is made by applying 

the rule-based method described in [3]. Of course, any sort 

of out-body or in-body sensors, e.g., optical markers or 

footswitches, would be used to perform data labeling. Rough 

estimates of state transition probabilities (aij) and priors (πi) 

are possible using {Z, Y} training data. The prior probability 

of the j-th state is estimated as follows: 

 
totjj NN

    
           (7) 

where Nj is the number of elements associated with the j-th 

label present in the N-dimensional vector Y. 

 If we assume that only a single transition between adjacent 

states can occur in each gait cycle, the transition probability 

from the j-th state to the next state of the sequence is 

estimated as: 

  QjiwhereNCa jji ,1mod,      (8) 

where C is the number of gait cycles in the training set. We 

can also write: 

 
jijj aa  1

                
(9) 

The parameters of the state emission Gaussian densities can 

be estimated by computing sample means and sample 

standard deviations from the observable outputs that are 

known emitted from any state: 
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Because of the nature of this work, which is intended to just 

scratch the surface of how HMMs would be applied in a 

context where activity classification and parameter 

estimation come together, we limit ourselves to the absolute 

minimum in the HMM structural complexity. We do not 

consider any process of feature extraction/selection, and we 

simply work on the signal sample values. Moreover, no use 

is made of multidimensional data, although two 

accelerometer signals are available together with the gyro 

signals in the original dataset. It is reasonable to expect that a 

combination of carefully chosen feature vectors, a greater 

number of states than four and different, more complex, state 

emission probabilistic models, would give rise to HMMs 

with outstanding performance as compared with the simple 

HMM developed in this paper, especially in case that we 

have to deal with different walking styles by different 

subjects, or by the same subject in different conditions of 

speed and inclination of the walking surface. 

 The leave-one-out cross-validation approach is applied in 

this paper using data from the P tested subjects (P = 3). This 

approach consists of training the model using data from P–1 

subjects and testing it using data from the excluded subject. 

The cross-validation process is repeated P times, each time 

excluding one different subject. Results are then aggregated 

from the P different models. Such a validation allows testing 

the capability of the proposed method to segment gait phases 

without the need of any individual model calibration. 

D. Implementation issues 

 Data processing and HMM learning/inference algorithms 

are implemented using Mathworks MATLAB (R2008a) and 

the HMM toolbox available from [18]. Some remarks about 

the application of the Baum-Welch (BW) algorithm are 

important. Usually, the BW algorithm is used to refine the 
 

Fig. 2. Four states left-right model. 
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parameter estimates produced during the initialization 

process. However, in our experiments the BW algorithm 

does not yield significant performance gains. Because of the 

higher computational costs and the risk of being trapped in 

local maxima of the likelihood function, we prefer not to 

apply the BW algorithm. As a consequence, the HMM 

parameters are fixed to those estimated during the 

initialization process. During the testing phase, the Viterbi 

algorithm is applied to gyro data, so as to estimate the most 

likely state sequence traversed by the chain (Viterbi 

decoding). In a simple left-right model, the decoding can be 

potentially plagued by two different errors: gait strides can 

be missed (deletions) or erroneously added (insertions). With 

regard to the latter problem, a heuristic strategy is cascaded 

to the Viterbi decoder: simply, this strategy is based on the 

reasonable assumption that, in the range of tested speeds and 

inclines, gait strides lasting less than 0.35 s cannot be 

observed.  

E. Performance assessment 

 Classification performance is calculated evaluating 

insertions and deletions.  Since the influence on the gait 

segmentation performance of any mismatching between 

Viterbi decoded and actual labels is intuitively related to the 

temporal distance existing between detected and annotated 

key events, classification errors are computed when they 

occur outside acceptance windows centered on the annotated 

key events with the following widths: 0, 20 and 30 ms. The 

sensitivity and the specificity of the method are evaluated for 

each model state in terms of correct classifications (true 

positives, TP and true negatives, TN) and misclassifications 

(false positives, FP and false negatives, FN): 

FNTP

TP
Se




  FPTN

TN
Sp




      
   (12)  

A single value of sensitivity and specificity value is then 

computed by aggregating results achieved for all model 

states. To assess how close in time are the Viterbi decoded 

and annotated key events, we finally compute mean and 

standard deviation of their difference.  

III. RESULTS AND DISCUSSION 

 Model parameters for one of the leave-one-out cross-

validation runs, when testing is made on subject #3 are 

reported in Table I. Similar results are obtained for the other 

two tested subjects.  Classification outcomes are reported in 

Table II. Different acceptance window sizes are considered 

(0, ±10 ms, ±30 ms) for sensitivity and specificity 

computation. Sensitivity and specificity of gait phase 

classification are high for every validated subject. With the 

larger rejection window value almost all data are correctly 

classified. We can conclude from this that most key events 

can be detected with a maximum difference of 30 ms (6 data 

samples at a sampling rate of 200Hz). In Table III bias and 

standard deviation for each difference between Viterbi 

decoded and annotated key events are reported.  

Not surprisingly, the less accurate results concerned the 

determination of the key events that involved the state S1. It 

is expected indeed that the gyro signal pattern may subtly 

change, so as to reflect the differences existing in the 

strategies adopted by different subjects in placing the foot to 

ground, in different conditions of speed and inclines of the 

walking surface. For some unknown reasons, the number of 

insertions is particularly high for Subject 1. However, all 

insertions are successfully detected and fixed by the 

previously described heuristic strategy. Moreover, it is 

interesting to note that no deletions occurred.  

Another observation concerns the critical behavior of the 

HMM in dealing with the transitions S1-S2 and S2-S3. Not 

surprisingly, the problem of detecting when the foot is steady 

is critical to any detector used to prescribe, e.g., when zero-

velocity updates have to be applied in a foot-mounted 

pedestrian navigation system [16, 19]. 

In Fig. 3 we report a Bland-Altman plot of the difference 

TABLE III 

EVENT BIAS, MEAN (STD) [SAMPLES] 

 HS FF HO TO 

Subject 1 -1.2 (4.1) 2.6 (7.4) -3.1 (4.1) -0.1 (0.3) 

Subject 2 4.6 (3.6) 3.0 (9.2) -2.6 (1.0) -0.7 (0.6) 

Subject 3 5.5 (5.5) 4.5 (6.5) -3.3 (0.8) -0.7 (1.1) 

Aggregated 3.7 (4.8) 3.3 (7.9) -3.0 (2.5) -0.5 (0.8) 

 

TABLE II 

CLASSIFICATION RESULTS, % 

 Subject 1 Subject 2 Subject 3 Aggregated  

Without rejection windows on transitions 

Se 94.4 92.6 93.0 93.3 

Sp  98.2 97.5 97.7 97.8 

With ±10 ms rejection windows on transitions 

Se 96.9 95.6 95.9 96.1 

Sp  99.0 98.5 98.6 98.7 

With ±30 ms rejection windows on transitions 

Se 98.6 98.1 98.2 98.3 

Sp  99.5 99.4 99.4 99.4 

     

Insertions 29.8 1.6 4.4 12.0 

Deletions 0 0 0 0 

 

TABLE I  

MODEL PARAMETERS, TRAINING ON SUBJECTS 1-2, TESTING ON SUBJECT 3 

 P1 P2 P3 P4 

Prior probabilities (π) 

 0.123 0.266 0.281 0.329 

Transition probability matrix (A) 

P1 0.954 0.046 0 0 

P2 0 0.981 0.019 0 

P3 0 0 0.983 0.017 

P4 0.014 0 0 0.986 

Emissions mean values (μ) [°/s] 

 -116.8 -22.6 -236.4 262.9 

Emissions standard deviations (σ) [°/s] 

 83.0 17.6 163.2 137.1 
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in the cadence values estimated by the HMM-based 

segmentation procedure and the rule-based segmentation 

upon which the data labeling procedure is based (the gold 

standard in this paper). No over (or under) estimation of the 

cadence is observed and the standard deviation of the 

difference is about 0.034 steps/s (2.7% of the maximum 

value of cadence).  

In most applications of HMM to activity recognition, data 

windowing is done in preparation of the feature extraction 

step. Window sizes do not generally conform to human 

periodic movements, including gait. When, for instance, 

frequency-domain techniques are applied with the aim to 

capture the inherent periodicities in walking signals, 

extremely long windows have to be considered to avoid 

truncation effects in the estimation of the dominant 

frequencies [20]. This is at the expense of the temporal 

resolution of the analysis. An advantage accrued by using 

HMMs as tools for classification and segmentation is that 

individual strides are detected, with the possibility to 

improve the interpretation process of gait data and to ease 

the process of classification into gait categories. 

IV. CONCLUSIONS AND FURTHER DEVELOPMENTS 

 A statistical tool for human gait segmentation based on a 

supervised HMM has been illustrated; two distinct 

advantages of the method are that (a) a fast training phase 

allows specifying the model and (b) an individual model 

calibration is not mandatory. In this paper, the system is 

based on a very simple on-body sensor configuration. The 

promising results shown in this paper encourage us to 

enlarge the scope of our work, by, e.g., incrementing the 

number of tested subjects and planning a data acquisition 

campaign in a wider set of experimental conditions, 

including over-ground walking. In particular, we intend to 

use an optoelectronic motion analysis system to generate 

reference kinematic data useful for algorithm learning,  

rather than using reference data produced by the same  

sensor configuration associated with the HMM. Moreover, 

we are porting the HMM-based segmentation method to a 

target hardware platform, in order to test the method 

performance in on-line conditions. 
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Fig. 3. Bland-Altman plot of the cadence estimation (all subjects 

aggregated data). 
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