
  

  

Abstract— Functional motor impairment caused by 

Parkinson’s disease and other movement disorders is currently 

measured with rating scales such as the Unified Parkinson’s 

Disease Rating Scale (UPDRS). These are typically comprised 

of a series of simple tasks that are visually scored by a trained 

rater. We developed a method to objectively quantify three 

upper extremity motor tasks directly with a wearable inertial 

sensor. Specifically, we used triaxial gyroscopes and adaptive 

filters to quantify how predictable and regular the signals were. 

We found that simply using the normalized mean squared 

error (NMSE) as a test statistic permitted us to distinguish 

between subjects with and without Parkinson’s disease who 

were matched for age, height, and weight. A forward linear 

predictor based on the Kalman filter was able to attain areas 

under the curve (AUC) in receiver operator characteristic 

(ROC) curves in the range of 0.76 to 0.83. Further studies and 

development are warranted. This technology has the potential 

to more accurately measure the motor signs of Parkinson’s 

disease. This may reduce statistical bias and variability of 

rating scales, which could lead to trials with fewer subjects, less 

cost, and shorter duration.  

I. INTRODUCTION 

HE Unified Parkinson’s Disease Rating Scale (UPDRS) 

was first proposed in 1987 [1] to assess and track the 

severity of Parkinson’s Disease (PD). It has since undergone 

revisions recommended by the Movement Disorder Society 

Task Force in 2003 [2]. The UPDRS consists of four 

sections: (1) mentation, behavior and mood; (2) activities of 

daily living; (3) motor; (4) complications [3]. These rating 

scales rely on the subjective judgment of a rater to visually 

assess the impairment during prescribed activities that 

comprise the motor section of the UPDRS. We examined the 

possibility of directly measuring impairment with an inertial 

sensor during two of these tasks: finger tapping and hand 

pronation-supination. This could ultimately obviate the rater 

and thereby reduce bias and variability of this instrument for 

measuring functional motor impairment in PD. 

Recent advances in microelectromechanical systems 

(MEMS) have yielded gyroscopes and accelerometers 

fabricated on integrated circuit (IC) chips. Wearable 

instrumentation based on these sensors is capable of 

measuring motion in 3-space and are now commercially 
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available from a variety of companies. 

Recent research on the use of accelerometers and 

gyroscopes to assess tremor have shown good correlation 

with raters on the UPDRS tasks [4][5][6][7]. We propose to 

extend this technology from tremor to other types of motor 

impairment by using an inertial sensor to record motion 

during finger tapping (UPDRS part 3.4) and hand pronation-

supination (UPDRS part 3.6). 

In the UPDRS, halts, hesitations, slowing repetition rate, 

and decreasing displacement amplitude warrant higher 

(worse) scores [3]. The adaptation rate of filters based on 

least-mean squares (LMS), recursive least squares (RLS), 

and Kalman filter algorithms can be constrained by use of a 

parameter in the filter equations. By tuning the adaptation 

rate of the filter, one can constrain the filter such that 

regular, predictable signals produced by people without 

Parkinson’s disease are closely tracked and less consistent 

signals produced by people with Parkinson’s disease tracked 

less accurately. We used normalized mean squared error 

(NMSE) between the actual and predicted signals as a 

measure of the predictability and regularity of the signal. We 

hypothesized that this would correspond to the degree of 

motor impairment. 

II. METHODOLOGY 

A. Experiment Design 

We used a wearable inertial sensor to record linear 

acceleration and angular velocity from 11 PD subjects and 

35 controls performing parts 3.4 and 3.6 of the UPDRS. We 

used two variations on part 3.4: (1) pad-pad finger taping 

and (2) tip-knuckle finger tapping. We modified part 3.6 to 

increase exercise duration by allowing the subject to rest the 

upper arm at their side with bent elbow and producing a grip 

that simulates grasping a door knob. The accelerometer and 

gyroscope were attached at the second phalanx of the index 

finger with the x-axis lateral to the finger, the y-axis 

longitudinal with the finger, and the z-axis perpendicular to 

the finger nail. 

This study was reviewed and approved by the institutional 

review board at Oregon Health & Science University.  

The fully flexed form of the pad-pad finger tap is shown 

in Figure 1(a). The subject was instructed to repeatedly 

extend and flex the finger and thumb such that their 

orientation cycled from a 90 degree angle when fully 

extended to contacting the thumb and finger pads when fully 

flexed. The subject was instructed to cycle from full 

extension to full flexion as quickly as possible without 
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compromising range of motion. 

The fully flexed form of the tip-knuckle finger tap is 

shown in Figure 1(b). The instructions were the same as for 

the pad-pad finger tap except that the fully flexed form has 

finger tip contacting the knuckle of the thumb. 

The fully clockwise form of the hand pronation-supination 

is shown in Figure 1(c). The subject was instructed to 

alternately rotate the hand fully clockwise then fully 

counter-clockwise. As in the previous exercises, the subject 

was instructed to cycle as quickly as possible without 

compromising range of motion. 

The target duration for all exercises was 15 seconds. The 

subjects were asked to inform us of any pain, discomfort, or 

fatigue immediately so that we could terminate the trial. The 

tasks were performed in the sequence (1) pad-pad finger tap, 

(2) hand pronation-supination, and (3) tip-knuckle finger tap. 

The entire sequence was repeated twice on one side then 

twice on the other. Signals from the inertial sensor were 

collected and stored during all exercises lasting 10 seconds 

or more. 
 (a) Pad-pad finger tap (b) Tip-knuckle finger tap 

  

 (c) Hand pronation-supination  

  

Figure 1. Forms of UPDRS motor exam exercises 

A. Instrumentation 

Instrumentation consisted of a KinetiSense™ Biokinetic 

Analysis System [4] with software version 3.0 running on a 

Windows XP laptop. The KinetiSense™ system included 

finger mounted triaxial accelerometers and gyroscopes 

sampled at a rate of 128 Hz and transmitted wirelessly to a 

laptop via a wrist mounted BlueTooth® transceiver. Data 

collected on the laptop was stored in comma separated 

values (CSV) files for later processing using MATLAB® 

Student version R2010a. 

B. Signal Processing 

Predictability was quantified by the normalized mean 

squared error (NMSE) between a target signal and its 

forward linear prediction (FLP). The ideal FLP signal is 

deterministic, periodic, and close to sinusoidal. Of the 

inertial sensor signals recorded, angular velocity best fits 

those characteristics. For finger tapping, the axis of rotation 

is the x-axis, and we used ω	 = 	ω�. For hand pronation-

supination, the axis of rotation is somewhere in the yz-plane, 

and we used 

 � = �sgn����	��
 + ��
, Ω� >	Ω� 	
sgn����	��
 + ��
, Ω� ≤	Ω�

� (1) 

where 

 Ω� = ∑��
 , Ω� = ∑��
 	 (2) 

A high level block diagram of the FLP is shown in Figure 

2. The filtering operation predicts the future value ω(n+1) 

from current and past values as an inner product of a vector 

of coefficients c with the past and present values of discrete 

time sampled signal ωωωω, 

 ���� + 1� = �����	��� − 1�	…��� − ���� (3) 

where the M×1 coefficient vector c is adapted to minimize 

the mean square error. We compute NMSE as the squared 

norm of the error signal e divided by the squared norm of the 

velocity signal ωωωω. 
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Figure 2. Block diagram of the one-step ahead FLP 

We examined the performance of four different adaptive 

filtering algorithms: (1) Ordinary Least Squares (LS), (2) 

Least Mean Square (LMS), (3) Recursive Least Squares 

(RLS), and (4) Kalman Filter. We optimized each filter by 

repeating the NMSE computation over a range of model 

order and adaptation parameter specific to each filter. We 

then statistically analyzed the computed NMSE surfaces 

across subjects as described in section C below choosing the 

parameters that maximized area under the receiver operating 

characteristic curve (AUC). Details regarding the use of each 

filter are described in the following sections. 

1) Least Squares Forward Linear Prediction (LSFLP) 

The LSFLP was adapted from Manolakis [8] pages 411-

413. The coefficient vector c is adapted after an L sample 

training interval at the beginning of the signal. The solution 

of the normal equations gives the value of c that minimizes 

squared error. We repeated NMSE computation varying 

model order M and training length L over the ranges 8 ≤ M ≤ 

128 and 256 ≤ L ≤ 512 respectively. 

2) Least Mean Squares Forward Linear Prediction 

(LMSFLP) 

The LMSFLP was adapted from Widrow [9]. Unlike the 

LSFLP, the coefficient vector c is continuously adapted over 
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the entire length of the signal. A 144 sample training interval 

at the beginning of the signal was excluded from NMSE 

computation providing time for filter coefficients to settle. 

We repeated NMSE computation varying model order M 

and adaptation gain µ over the ranges 24 ≤ M ≤ 144 and 0.1 

≤ µ ≤ 1.9 respectively. 

3) Recursive Least Squares Forward Linear Predictor 

(RLSFLP) 

The RLSFLP was adapted from Manolakis [8] pages 548-

573. Like the LMSFLP, the coefficient vector c is 

continuously adapted over the entire length of the signal. A 

256 sample training interval at the beginning of the signal 

was excluded from NMSE computation providing time for 

filter coefficients to settle. We repeated NMSE computation 

varying model order M and forgetting factor λ over the 

ranges 24 ≤ M ≤ 144 and 0.9049 ≤ λ ≤ 0.9999 respectively. 

4) Kalman Forward linear Prediction (KFLP) 

The KFLP was adapted from Kalman [10]. Like LMSFLP 

and RLSFLP, the coefficient vector c is continuously 

adapted over the entire length of the signal. A 512 sample 

training interval at the beginning of the signal was excluded 

from NMSE computation providing time for filter 

coefficients to settle. We varied model order M and 

processes variance q over the ranges 24 ≤ M ≤ 152 and 1e-6 

≤ q ≤ 2e-5 respectively. 

C. Statistical Analysis 

We quantified the ability of the algorithms to distinguish 

between people with and without Parkinson’s disease using 

a lower-tailed student t-test with unequal variance and 

receiver operating characteristic (ROC) curves, which are 

used extensively in medical research [11]. ROC curves plot 

the probability of a true positive versus the probability of a 

false positive over a range of threshold values. If the 

subject’s measured NMSE is less than the threshold NMSE, 

it is a negative test result. Otherwise, it is a positive test 

result. A positive test result for a person without PD is 

considered a false positive whereas a positive test result for a 

person with PD is considered a true positive. The null 

hypothesis is rejected in favor of the alternative when the p-

value is less than our level of significance (0.05) and the 

area under the ROC curve (AUC) is large. 

III. RESULTS 

The control subject population consisted of 17 females 

and 18 males ranging in age from 39 to 91 years, in weight 

from 92 to 280 pounds, and in height from 62 to 76 inches. 

The PD subject population consisted of 3 females and 8 

males ranging in age from 59 to 75 years, in weight from 

121 to 230 pounds, and in height from 62 to 73 inches. All 

PD subjects were off medication and had total clinician rated 

UPDRS motor exam scores ranging from 23 to 45 with an 

average of 32.05 and standard deviation of 6.15. The 

UPDRS finger tap scores ranged from 1.0 to 3.5 with an 

average of 2.25 standard deviation of 0.84. UPDRS hand 

pronation-supination scores ranged from 0 to 3.5 with an 

average of 1.7 and standard deviation of 0.88. 

For PD subjects, each of the three exercises was 

performed 4 times (twice per side) during a single session. 

For controls, the number of trials varied depending on 

subject availability with one control performing the pad-pad 

finger tap 42 times (21 times per side) during 13 different 

sessions. In all cases and for each metric, all trials taken by a 

particular subject performing a particular exercise were 

averaged. 

A comparison of angular velocity signals from a PD 

subject and control recorded during hand pronation-

supination is shown in Figure 3. The PD signal is visibly less 

deterministic than the control signal. 

 
Figure 3. Comparison of angular velocity signals from a PD subject (top) 
and control (bottom). PD signals are less deterministic than controls. 

We tuned adaptation and model order parameters for each 

FLP and exercise to yield peak AUC. By way of example, a 

plot of the AUC surface vs. forgetting factor λ and model 

order M calculated on the NMSE in RLSFLP during hand 

pronation-supination is shown in Figure 4. A peak at (λ, M) 

= (0.93, 104) is evident. Similar surfaces were used to tune 

the other filters for each exercise. 

 
Figure 4. Plot of AUC surface vs. forgetting factor λ and model order M 

calculated on the NMSE in RLSFLP during hand pronation-supination. 

Statistical analysis of the results showed that 
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discrimination was improved when the control group was 

reduced to those within age, height and weight limits of the 

PD subject group. Furthermore, discrimination was best on 

the dominant hand. Final p-value and AUC results using 

optimally tuned FLPs are listed in Table I. 

TABLE I. AUC AND P-VALUE BY EXERCISE AND ALGORITHM 

Algorithm 

Pad-Pad  

Finger Tap 

Tip-Knuckle  

Finger Tap 

Hand Pronate- 

Supinate 

AUC P-val. AUC P-val. AUC P-val. 

LS 0.503 0.639 0.677 0.301 0.818 0.134 

LMS 0.749 0.042 0.828 0.009 0.808 0.076 

RLS 0.487 0.710 0.697 0.182 0.869 0.036 

Kalman 0.781 0.026 0.828 0.018 0.758 0.079 

 

Clearly, LSFLP and RLSFLP did not perform well in 

either finger tap exercise. Examination of the LSFLP and 

RLSFLP histograms revealed a positive skew for both 

controls and PD subjects that did not exist in LMSFLP and 

Kalman FLP. Examination of the actual versus predicted 

signals collected from subjects in the skewed end of the 

histograms showed that LSFLP and RLSFLP exhibit 

significantly larger ripple in their impulse response than do 

LMSFLP and Kalman FLP. An example of this effect is 

shown in Figure 5. The sharp negative peaks of the finger 

tap signal produce ripple in LSFLP and RLSFLP response, 

while no ripple is evident in the LMSFLP and Kalman FLP. 

These sharp peaks are independent of PD and the resulting 

ripple dominates the error.  

 
Figure 5. Plot of actual finger tap signal vs. LSFLP and LMSFLP 
predictions showing ripple in the impulse response of the LSFLP prediction. 

IV. CONCLUSION 

Comparing FLP algorithms, LMS and Kalman yielded 

high AUC and low p-value for all exercises. LS and RLS did 

not perform well for finger tapping due to ripple in their 

impulse response. Comparing exercises, tip-knuckle finger 

tapping produced best results with LMS and Kalman FLP. 

However, hand pronation-supination produced high AUC 

with all FLP algorithms. 

As a general rule, LMS performed best with small 

adaption gain, RLS performed best with long memory, and 

Kalman with low process variance. Also, results showed a 

dependence on age, weight and height. This correlation 

needs to be quantified in order to compensate for these 

variables. 

In conclusion, this research indicates that inertial sensors 

are a promising means of quantifying motor impairment in 

people with PD. The angular velocity signal collected from 

PD subjects performing finger tapping and hand pronation-

supination exercises was less predictable than those 

collected from age, weight and height-matched controls. 

Other measures of regularity based on complex system 

analysis such as approximate entropy or traditional measures 

such as spectral flatness may also be helpful in this 

application. Further research and development is warranted. 
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