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Abstract— In this paper, an entropy based method for quan-
tifying the depth of anesthesia from rat EEG is presented.
The proposed index for the depth of anesthesia called modified
Shannon entropy (MShEn) is based on Shannon entropy (ShEn)
and spectral entropy (SpEn) which are widely used for ana-
lyzing non-stationary signals. Discrimination power (DP), as a
performance indicator for indexes, is defined and used to derive
the final index for the depth of anesthesia. For experiment, EEG
from anesthetized rats are measured and analyzed by using
MShEn. MShEn shows both high stability and high correlation
with other indexes for depth of anesthesia.

I. INTRODUCTION

The therapeutic index, a ratio of the dose that kill 50%
of population to the effective dose for 50% of population,

of general anesthetics is only 3 − 4, whereas the indexes

for many drugs are on the order of several hundreds, im-

plying that anesthetics are powerful poisons [1]. Due to this

narrow margin, patients often undergo intraoperative aware-

ness, postoperative recall and aftereffects. Therefore, patients

should be continuously monitored throughout surgeries in

order to use proper amount of anesthetic agent.

Results from both human and animal studies demonstrate

that changes in EEG during anesthesia reflect hypnotic

state of the subject. In recent years, monitoring the depth

of anesthesia based on EEG signal has been an active

research topic. Many methods for quantifying the level of

consciousness have been proposed and some of them are

commercialized. Bispectral index (BIS) monitor [2] from

Aspect Medical Systems, Entropy monitor [3] from Datex

Ohmeda and NeuroSENSE monitor [4] from NeuroWave

Systems are the well-known results. Despite these results,

the research on monitoring the level of consciousness based

on EEG is still active as those monitors sometimes provide

wrong indexes under certain circumstances [5].

Since EEG from conscious subject tends to show unpre-

dictable and dynamic behavior compared to EEG from anes-

thetized subject, entropy and complexity have been exten-

sively studied as a measure of level of consciousness. Among

many different ways of defining complexity and entropy,

researchers have found that spectral entropy (SpEn), wavelet

entropy, approximate entropy (ApEn), and Lempel-Ziv com-

plexity have large correlation with depth of anesthesia [6].

As a comparison of these methods, in [7], SpEn, ApEn,

complexity, fractal dimension and BIS are calculated from
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EEG of 150 patients undergoing general anesthesia. SpEn

performed best of the entropy and complexity measures,

and similar to BIS. On the other hand, Shannon entropy

(ShEn) has not been widely used to measure the level of

consciousness from EEG signal.

In this work, modified Shannon entropy (MShEn) is pro-

posed as a measure of the depth of anesthesia from EEG

signal. ShEn is modified based on the data set from rat EEG

measurement in a way to discriminate EEG data from awake

subject and anesthetized subject. Despite its computational

simplicity, the experimental results show that it outperforms

other entropy measures in discriminating EEG signals from

different states.

II. MODIFIED SHANNON ENTROPY (MSHEN) : CONCEPT

AND DERIVATION

Following approach is used to derive an entropy based

measure for depth of anesthesia. First, two data sets are

defined as follows and are extracted from the measurement

results in order to derive an index for depth of anesthesia. The

experimental procedure for obtaining EEG data is explained

in Section III.

• DAW (awake state) : 30 epochs recorded from 8 awake

rats. The length of each epoch is 16s.

• DAN (deep hypnotic state): 30 epochs recorded from

3 rats in deep hypnotic state. The length of each epoch

is 16s. Isoelectric EEG is often observed.

Each epoch is normalized by its RMS value. This is in-

evitable when evaluating anesthetic depth from EEG signal,

as amplitude of EEG is vulnerable to measurement condi-

tions such as contact impedance of electrodes. Let f be a

function that maps an observed EEG vector x to an index

that represents the depth of anesthesia

f : x −→ f(x) = Index for Depth of Anesthesia (1)

and discrimination power (DP) is defined as follows as

an index for evaluating the function f , where the conceptual

explanation about DP is presented in Fig. 1.

DP =
|MEAN(f(DAW)) − MEAN(f(DAN))|

(STD(f(DAW)) + STD(f(DAN)))/2
(2)

We define our goal as to find a function f that maximizes

DP by modifying entropy measures based on DP test results.
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Fig. 1. Description of DP. DP quantifies the degree of discrimination for
two sets of data.

A. Entropy measures used for EEG analysis

1) Shannon Entropy (ShEn): ShEn [8] quantifies the

histogram of a signal as (3), where ai is the discrete set of

signal amplitude and p(ai) is the probability that amplitude

ai occurs.

ShEn =
−

∑k

i=1
p(ai) log p(ai)

log k
(3)

The DP of ShEn is 0.7413, implying that it has little

information about the depth of anesthesia. This limitation

is from the fact that ShEn does not contain any frequency

domain information where amplitude information in each

epoch in the data sets is removed by normalizing it with

its RMS value.

2) Spectral Entropy (SpEn): SpEn can be calculated as

follows, where fi is the discrete set of frequency and

PSD(fi) is the normalized power spectral density at fi.

SpEn =
−

∑k

i=1
PSD(fi) log PSD(fi)

log k
(4)

The DP of SpEn is 9.4076, proving its high performance

on discriminating EEG signals from different states.

3) Approximate Entropy (ApEn): ApEn [9] measures the

unpredictability or repeatability of a signal. Given a signal

X = {x1x2x3 · · ·xN}, ApEn is calculated as follows. First,

a positive integer m and a positive real number rf are

determined. Second, N − m + 1 vectors are constructed

as Xm(i) = {xixi+1xi+2 · · ·xi+m−1} and the distance

between two vectors is defined as follows.

Dist(Xm(i),Xm(j)) = max(|Xm(i) − Xm(j)|) (5)

Next, Cm
i (rf ) is defined as 1/(N − m + 1) times the

number of vectors Xm(j) falling within vector distance rf

of Xm(i). Finally, the ApEn is defined as follows :

ApEn =

∑N−m+1

i=1
log Cm

i (rf )

N − m + 1
−

∑N−m

i=1
log Cm+1

i (rf )

N − m
.

(6)

The DP of ApEn is 7.7795.
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Fig. 2. DP of ShEn calculated after high-pass filtering the signal
with different pass-band and stop-band frequencies is calculated. DP is
maximized when Fpass = 30Hz and Fstop = 28Hz.

4) Lempel-Ziv Complexity (LZC): LZC [10] is a measure

of number of patterns in a given sequence of symbols.

For calculation of LZC for a sequence of symbols X =
{x1x2x3 · · ·xN}, the sequence is decomposed into consec-

utive blocks as X = B1, B2, B3, · · ·Bn. B1 is set to x1 and

Bi (i ≥ 2) is defined as the minimal size of block that has

not shown in Bj (1 ≤ j < i). Finally, the complexity is

defined as LZC = n
N

logα N , where α is the number of

symbols. The DP of LZC is 4.8526 and the DP test result

for various entropies and their specifications are summarized

in Table. I.

B. Proposed Modified Shannon Entropy (MShEn)

As aforementioned, the limitation of using ShEn of EEG

as a measure of the depth of anesthesia comes from the fact

that it does not reflect any frequency domain information.

Therefore, it can be expected that ShEn may provide more

information about the depth of anesthesia, once it is modified

to reflect frequency domain information.

Our approach to modify ShEn is to calculate entropy

from the high frequency component of EEG signal, based

on the report that loss of consciousness after anesthetic

administration showed a marked drop in high frequency band

activity. EEG signal is filtered by an FIR high-pass filter, to

calculate entropy from high frequency component. In order

to find an optimum high-pass filter that maximizes DP, many

high-pass filters with different frequency responses are tested

and the result is shown in Fig. 2. Fpass and Fstop, which

are the filter design parameters, are used to represent the

characteristic of the filter where the order of the filters is

fixed to 15. It can be seen that the maximum DP of 11.4031
is achieved when Fpass = 30Hz and Fstop = 28Hz.

For further improvement of DP by modifying the index to

reflect more frequency domain information, SpEn is multi-

plied to the ShEn from high-pass filtered signal. Before the

multiplication, the entropy values are linearly mapped into
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Fig. 3. The proposed algorithm for calculating MShEn. ShEn is calculated
after high-pass filtering the signal and SpEn is multiplied to the result.

Method DP Parameter Value

ShEn 0.7413 number of histogram bins, k 64

SpEn 9.4076 number of channels, k 16

ApEn 7.7795 Embedding dimension, m 2

Filtering level, rf 0.2STD

LZC 4.8526 number of symbols, α 3

MShEn 13.2497 number of histogram bins, k 64

TABLE I

SPECIFICATION AND DISCRIMINATION POWER OF SHEN, SPEN, APEN,

LZC AND PROPOSED MSHEN.

[0, 1]. Finally, an entropy based index for depth of anesthesia,

named modified Shannon entropy (MShEn), is obtained and

the overall procedure for the calculation of MShEn is shown

in Fig. 3. The DP of MShEn is 13.2497, which is much

higher than that of other entropy based measures. It should

be noted that even small increase in DP, in analogous to the

effect of SNR on BER in communication systems, may result

in significant increase in the reliability of the index.

III. EXPERIMENTS

A. Subject Strains

Male and female Sprague Dawley rats aged from 6 to

10 weeks and weighing 150-250 grams were used in the

experiment. Rats were group housed in transparent Plexiglas

cages (38cm× 25cm× 19cm) and freely accessible to food

and water. The temperature was held constant at 21 ± 2◦C

and the humidity was maintained between 16± 2%. The ex-

perimental protocols were approved by Institutional Animal

Care and Use Committee, KAIST, Korea.

Fig. 4. Experimental setup and top view of the rat head with the electrodes.
The signal electrode is clipped on the scalp and the ground and the reference
electrodes are clipped on the right and left ear, respectively. Electrolyte is
pasted on the electrodes.

B. Experimental Procedure

Before the measurement, the scalp hair of the rats was

shaved while the rats were anesthetized with 2.5-3.5 mL/Kg

mixed anesthetic agent(volumetric ratio 4:1 of zoletil and

rompun, respectively) administered intraperitoneally. All rats

had three to five days of relaxation period after shaving. The

EEG signal was recorded by BIS VISTA monitor (Version

3.00), which also provides useful indexes such as BIS, EMG

and spectral edge frequency (SEF). Copper alligator clips

were used as the electrodes for measuring EEG, as the

BIS electrodes are designed to be used for human. Signal

electrode, the reference electrode and the ground electrode

were clipped to the middle of scalp, the left ear and the

right ear, respectively. After attachment of the electrodes,

electrolyte was pasted at the contact points in order to ensure

high conductivity.

The rats were under the inhalation anesthesia by anesthesia

machine with enflurane. During the measurements, the rats

were kept in a chamber as shown in Fig. 4. For continuous

change in the concentration of the anesthetic gas, the gas

from anesthesia machine was delivered to the chamber

instead of directly delivering the gas to the rats. Artificial

respirator in the anesthesia machine was not used since the

tidal volume of the respirator is not appropriate for rats.

During measurements, the flow rate and concentration

of anesthetic agents were controlled with 3 steps. First,

0.5 LPM of oxygen mixed with 5% of enflurane was pro-

vided for inducing anesthesia for 15-20 minutes. Second,

the delivery of anesthetic gas was stopped for maintaining

deep anesthesia for 5-10 minutes. Finally, 0.4 LPM of pure

oxygen was supplied into the chamber for awakening the rat.

Measurements were ended when the rat became conscious

and started to move.

IV. RESULT & DISCUSSION

Once EEG signal is obtained from BIS VISTA monitor,

signal processing is performed on a PC using MATLAB

R2010a. In order to enhance the signal integrity while min-

imizing the signal distortion in desired frequency band, an

FIR low-pass filter is designed to have linear phase response

and a zero at 60Hz. Denoising technique using wavelet

transform is employed to reject low frequency artifacts such
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Fig. 5. Time coures of MShEn, SpEn and DFA calculated from EEG of anesthetized rats are shown. 3 phases (induction phase, maintenance phase and
awakening phase) of the measurements are separated by dotted lines.

as motion artifacts due to breathing [11]. After denoising, the

signal is segmented into 16s epochs with 14s overlapping

with adjacent epochs. SpEn is evaluated from each epoch

by using a 16 channel uniform filter bank. On the other

hand, segmented epoch is filtered by high pass filter with

the 3dB frequency of 29.6Hz. Filtered epoch is normalized

with the RMS value of unfiltered epoch. Then the ShEn is

measured with 64 bin histogram of the normalized signal.

Finally, SpEn and ShEn are linearly mapped into [0, 1] and

MShEn is obtained by multiplying them.

The time courses of depth of anesthesia evaluated for 8

measurements are presented in Fig. 5. For comparison, scal-

ing exponent from detrended fluctuation analysis (DFA) [12]

and SpEn, which are verified methods for evaluating depth

of anesthesia from EEG signal, are engaged. Both SpEn

and DFA are linearly mapped into [0, 1] to compare with

MShEn. The Pearson correlation coefficient between DFA

and MShEn is 0.9683 and that between MShEn and SpEn is

0.9751. Although BIS VISTA monitor which was used for

the measurement of EEG signal also provides its own index

BIS for anesthetic depth, BIS is excluded in the comparison.

The reason is that the BIS value was invalid for most part of

the measurements, probably due to the differences between

human and rat and low signal quality.

MShEn responds to the change in the flow rate and

concentration of anesthetic gas in a few minutes in some

cases, but not in some other cases. This is also true for

other indexes for depth of anesthesia. More specifically, fast

response is observed in the cases that the minimum value

of MShEn is over 0.2. However, in the cases that MShEn

reached near 0, MShEn and other indexes start to increase

after delivering pure oxygen to the chamber for 3 − 20
minutes. This latency is probably due to the long time taken

for eliminating the agent from the body, as the spontaneous-

breathing of the rats were weak during deep anesthesia. In

order to discriminate whether the latency is from the rats

or from the limitation in the indexes, experimental protocol

should be modified to use artificial respirator rather than

relying on spontaneousbreathing of the rats.

V. CONCLUSION

An entropy based index for evaluating depth of anesthesia

from rat EEG is introduced. The index is mostly based

on ShEn, which is not widely used for analyzing depth

of anesthesia due to its low performance on discriminating

signals with different spectrums. Nonetheless, high DP is

achieved by modifying ShEn to reflect frequency domain

information. Experimental results from rat EEG show that

not only MShEn shows high correlation with other indexes

for depth of anesthesia but also it achieves low variability

over wide range of depth of anesthesia.
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