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Abstract— A robust method for detecting motor unit 

potential trains (MUPTs) contaminated with false classification 

errors (FCEs) during EMG signal decomposition and then 

removing the FCEs from a contaminated train is presented. 

Using motor unit (MU) firing pattern information provided by 

each MUPT, the developed algorithm first determines whether 

a given train is contaminated by high number of FCEs and 

needs to be edited. For contaminated MUPTs, the method uses 

both MU firing pattern and motor unit potential (MUP) shape 

information to detect MUPs that were erroneously assigned to 

the train (i.e., represent FCEs). For the simulated data used in 

this study contaminated MUPTs could be detected with 88.7% 

accuracy. For a given contaminated MUPT, the algorithm on 

average correctly detected 83.4% of the FCEs and left 93.4% of 

the correctly assigned MUPs. The accuracy of the MUPs 

classified to a MUPT was estimated to be 92.1% on average.  

 

LIST OF SYMBOLS AND ABBREVIATIONS 

EMG Electromyographic 

FCE False–classification errors 

FDA Fisher linear discriminate analysis  

IDI Inter–Discharge Interval 

MCE Missed classification errors 

MU Motor unit 

MUP Motor unit potential 

MUPT Motor unit potential train 

PSI Percentage of shape inconsistency  

SCC Single–contaminated classifier 

m  Number of effective time samples representing the 

MUPs of a MUPT  

μ  The mean of IDIs of a MUPT  

σ The standard deviation of the IDIs of a MUPT 

I. INTRODUCTION 

N electromyographic (EMG) signal detected by an 

electrode during muscle contraction, is the 

superposition of background noise and the motor unit 

potential trains (MUPTs) created by the active motor units 

(MUs). The firing patterns of these active MUs along with 

their motor unit potentials (MUPs) contain valuable 

information regarding the state of health as well as the 

anatomical and physiological features of the muscle under 

study. One effective way of extracting such information is 

via EMG signal decomposition. 

EMG signal decomposition is the process of resolving a 
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EMG signal into several MUPTs each of which represents 

the activity of a MU that was active during signal detection 

and which contributed significant MUPs to the detected 

signal. This process is completed using digital signal 

processing and pattern recognition techniques in three or 

four steps: signal preprocessing, signal segmentation (MUP 

detection), and then clustering and possibly supervised 

classification of the detected MUPs [1]–[3]. The purpose of 

EMG signal decomposition is to provide an estimate of the 

MU firing patterns and MUP templates of active MUs. Such 

information can assist with the diagnosis of neuromuscular 

disorders [4]–[6], the understanding of motor control [7], 

and the characterization of MU architecture [8]. A recent 

comprehensive review of the algorithms developed for the 

decomposition of indwelling EMG signals can be found in 

[1]. 

As with other pattern recognition problems, errors may 

occur during the decomposition of an EMG signal. Some 

MUPs of a MUPT may be missed or some MUPs of other 

trains may be mistakenly assigned to the wrong train. 

Consequently, a MUPT may be contaminated by two types 

of errors: missed classification errors (MCEs) and false 

classification errors (FCEs). 

Missed classification errors, also known as false negative 

errors, represent those MUPs of a MUPT that were missed 

during MUP detection, clustering or supervised 

classification. Due to MCEs, long intervals occur between 

consecutive MUPs and hence the inter–discharge interval 

(IDI) distribution is skewed to the right. MUPTs with a high 

MCE rate are called incomplete trains.  Because of possibly 

small samples sizes, the estimation of MU firing pattern 

statistics and the MUP template of a MUPT can be 

unreliable for incomplete trains.  

False classification errors (FCEs), also known as false 

positive errors, in a MUPT represent the MUPs that were 

incorrectly assigned to this train. In general, FCEs are due to 

the similarity of the MUPs created by different MUs along 

with insufficient knowledge about the exact MU firing 

patterns, MU firing pattern statistics, and the MUP templates 

of the active MUs. FCEs cause MUP shape inconsistency 

and/or IDI inconsistency in a MUPT. A MUPT that has a 

high number of FCEs is called a contaminated train.  

Contaminated MUPTs have  IDI distributions that are 

skewed to the left and their  MU firing pattern statistics are 

often underestimated (due to the increased number of 

shortened IDIs ). In addition, the  instantaneous MU firing 

rate versus time plots for contaminated trains provide a 
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confused representation of the firing rates of the 

corresponding MU. Such invalid information may contribute 

to either clinical or scientific misstatements when used 

clinically or for physiological investigation.  

Identifying contaminated MUPTs and then editing them to 

remove the FCEs during EMG signal decomposition can 

improve decomposition accuracy. At the end of each pass 

during decomposition, contaminated MUPTs are identified 

and then have their FCEs removed. Such editing can help 

with assigning more MUPs to the extracted trains in the next 

iterations of decomposition, and can improve estimation of 

the MUP templates and MU firing pattern statistics of the 

extracted MUPTs. Ultimately, the editing process can 

improve decomposition accuracy. 

To date, editing MUPTs extracted by a decomposition 

algorithm is conducted manually by an expert operator. The 

FCE in each MUPT is identified by assessing its 

instantaneous MU firing rate plot and a raster plot of its 

assigned MUPs. The accuracy of such editing, as with other 

methods that need human operator supervision, depends on 

operator experience and skill. In addition, such a process is 

time consuming and cannot be practically completed in a 

busy clinical environment. More importantly, the process 

cannot be executed during automatic decomposition of an 

EMG signal. In this paper, an algorithm that can detect 

contaminated MUPTs and automatically edit its FCEs is 

presented. Details of the method are given below. 

II. METHODS 

 Contaminated MUPTs are first detected using the single–
contaminated classifier (SCC) developed earlier [9]. For 

each contaminated MUPT the algorithm then attempts to 

detect  and remove FCEs. Following is a description of each 

step. 

A. Detecting Contaminated MUPTs 

MUPs  erroneously assigned to a MUPT generally cause 

MUP shape and/or IDI inconsistencies. The IDI distribution 

of a contaminated MUPT is skewed to the left and the 

variability in its instantaneous MU firing patterns is 

increased. In this work, such information was employed to 

determine whether a given MUPT is a contaminated MUPT 

or not. Considering this two–class problem (contaminated 

MUPT and non-contaminated MUPT), the SCC was 

developed to determine the class label of a given MUPT. 

The SCC used is a Fisher linear discriminate analysis (FDA) 

classifier [10] that uses ten features extracted from the IDIs 

and MU firing pattern of the given MUPT. 

The features used by the SCC are listed in Table 1; 

definitions and calculation details for these features are 

presented elsewhere [9]. In short, the majority of these 

features target the left side of the IDI distribution of the 

given MUPT, where short IDIs (i.e., the errors of interest) 

are reflected. The identification rate targets the right side of 

the IDI distribution to measure the level of MCE in the 

MUPT. The firing rate mean consecutive difference 

measures the variation in the instantaneous firing rate. The 

instantaneous firing rate at each MUP occurrence in a 

MUPT is defined as the inverse of a local IDI that is 

obtained by applying a normalized Hamming filter to the 5 

IDIs before and after the current MUP.  

The FDA–based SCC classifier was used because it is 

robust and computationally efficient to implement. In 

addition, as shown in [9] the FDA–based SCC outperformed 

SCCs developed based on support vector machine and 

pattern discovery concepts in correctly classifying 

contaminated MUPTs. 

B. Detecting FCEs in a Contaminated MUPT 

The FCE detection algorithm employs both MU firing 

pattern and MUP shape information to classify the MUPs of 

a MUPT as being either a FCE or a correct MUP 

assignment. Initially, erroneously assigned MUPs (i.e, 

FCEs) are detected using shape information. The goal is to 

detect those MUPs whose shape is inconsistent with the 

shapes of the majority of the MUPs in the MUPT.  With the 

information provided by the EMG decomposition algorithm 

used, each MUP in the given MUPT is represented by a 

window of 80 sample points (representing an interval of 2.56 

ms at a sampling rate of 31.25 kHz) within the EMG signal 

band–pass filtered using a low–pass differencing filter [11]. 

Among these 80 samples, the m samples for which the N 

MUPs of the contaminated MUPT significantly differ from 

each other are used to detect FCEs using only MUP shape 

information.  

Let xi[n] n=1,2,…,80 represent the 80 filtered time 

samples of the ith MUP in the MUPT. For each n, the gap 

values g[n] which are the largest change in the sorted xi[n] 

values are determined and then the m  values with the largest 

g[n] that are also at least 8 samples (0.26 ms) apart are used 

as effective features to represent the MUPs assigned to the 

Table 1. Firing pattern features used for developing the single–
contaminated classifier.  The output of these features can indicate whether 

a given MUPT is contaminated by a high number of FCEs or not. 

Feature         Description 

CV Coefficient of variation 

CVL Lower coefficient of variation 

CVL/CVU The ratio of lower and upper CV 

PI Percentage of inconsistent IDIs 

LIDIR Lower IDI ratio 

1stSCorr First coefficient of serial correlation 

Skewness 
A measure of symmetry of the IDI 

histogram 

ID– rate Identification rate 

FR–MCD Firing rate mean consecutive difference 

IDI–MCD IDI mean consecutive difference 
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MUPT under study. 

Let yi[k] k=1,2,…,m denote the m effective time samples 

representing the ith MUP in the given contaminated MUPT; 

S[k] represents the m corresponding samples of the MUP 

template of the given MUPT; and   denote the root mean 

square value of the noise contaminating the MUPs. For each 

MUP, the percentage of shape inconsistency (PSI) and its 

distance from the MUP template are calculated as: 
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where U(t) is the unit step function.  

Based on the calculated values for PSIi and  di and using 

   statistics, MUPs are classified into three classes based on 

their shape: 1) definitely a FCE if            AND PSIi 

> 0.8; 2) potentially a FCE if           ; and 3) a 

correctly assigned MUP. 

In the second step of detecting FCEs, erroneously 

assigned MUPs are detected using MU firing pattern 

information. MUPs that cause IDI inconsistencies are 

detected and classified into three categories based on their 

firing pattern: 1) Semi-definitely a FCE if IDIi < μ-3σ; 2) 

potentially a FCE if IDIi < μ-2σ; and 3) do not know if IDIi > 

2μ. Where μ and σ are the mean and standard deviation of 

the IDIs of the given train estimated using the error–filtered 

estimation algorithm that provides accurate estimaties of 

these IDI statistics of a MUPT even when contaminated by a 

high MCE rate [12]. 

In the third step, a MUP is classified as a FCE if it was 

assigned into either: 1) the definitely a FCE based on shape 

class; or 2) the potentially a FCE based on shape class AND 

the do not know based on firing pattern class; or 3) the 

potentially a FCE based on shape class AND the potentially 

a FCE based on firing pattern class. In addition, a MUP is 

labeled as a FCE if it is assigned into the Semi-definitely 

based on IDI class and its PSI > 0.4.  Otherwise it is 

classified as a correctly assigned MUP. 

III. RESULTS AND DISCUSSION 

Each part of the developed method was tested using 

simulated  data. Specifically, 535 MUPTs extracted from 43 

EMG signals each of 10s length with different levels of 

intensity, ranging from 24 to 193 pps, with jitter values 

ranging from 50 to 150μs, and with IDI variability (i.e., 

coefficient of variation) ranging from 0.10 to 0.45 generated  

using an EMG signal simulator developed by Hamilton-

Wright and Stashuk [13] were used. These data allowed us 

to study the performance of the developed method in relation 

to various degrees of MUP shape and IDI variability. The 

generated signals were decomposed using DQEMG software 

[14]. MUPs were added to each train extracted from an 

EMG signal at random points in time until the FCE rate of 

the train was between 5% and 20% (with 5% intervals). The 

added MUPs were selected randomly from the remaining 

MUPTs extracted from the same EMG signal.  

The FDA–based SCC, configured based on previous 

simulated training data [9], had a sensitivity (i.e. the ability 

to detect a contaminated train) of 88.7% and a specificity 

(i.e., the ability to detect a non-contaminated train) of 95.5% 

and an overall accuracy of 90.1% when applied to the 

simulated data of this work. The accuracy of the FDA–based 

SCC in detecting contaminated MUPTs decreases as their 

MCE rates increase. As shown in Figure 1, the FDA–based 

SCC correctly detected approximately only 65% of the 

contaminated MUPTs having MCE rates between 55% and 

85%. 

The calculated means and standard deviations across the 

MUPTs studied for the sensitivity, specificity and accuracy 

of the FCE detection algorithm with     ,       , and 

       are presented in Table 2. These settings were 

empirically found to perform better based on 

experimentation with several MUPTs. 

As shown, the FCE detection algorithm can detect the 

majority of the added FCE errors and was also able to 

correctly classify most of the correctly assigned MUPs. 

However, the sensitivity decreases as the MCE rate in the 

contaminated MUPTs increases (see Figure 2). As shown, 

the sensitivity of the algorithm for contaminated MUPTs 

having MCE rate between 25% and 85% was approximately 

80%. One reason for the drop in performance of both the 

SCC and the FCE detection algorithm with increased MCE 

Table 2. The performance of the FCE detection algorithm obtained using 

535 MUPTs obtained from the decomposition of 43 simulated EMG 
signals. 

Sensitivity (%) Specificity (%) Accuracy(%) 

84.4±0.7 93.4±0.1 92.1±1.0 

 
Figure 1.  Sensitivity of the SCC classifier in detecting a contaminated 

MUPT versus the MCE rate in the train.  

 

4396



  

is that the accuracy of estimating the IDI statistics, 

especially the standard deviation, decreases as the train 

becomes more sparse [12]. 

Figure 3 illustrates the estimated values for the sensitivity 

of the FCE detection algorithm versus the similarity between 

the MUP template of the contaminated MUPT and an 

erroneously assigned MUP measured using the 

pseudocorrelation [15]. As shown, the sensitivity of the 

algorithm decreases as the similarity between the incorrectly 

assigned MUP (i.e., the FCE) and the MUP template of the 

contaminated MUPT increases such that in the worse case 

(pseudocorrelation = 0.8) the algorithm failed to detect 

around 78% of the FCEs created by MUPs that are very 

similar to the MUP template. Sensitivity for such cases can 

be improved by increasing   or classifying at least one of 

the two MUPs creating an IDI < μ-3σ as an FCE, but such an 

adjustment may cause specificity to decrease. Nevertheless, 

the performance of the algorithm on average is promising in 

terms of detecting and removing FCEs from contaminated 

MUPTs. 

IV. CONCLUSION 

A robust method for detecting MUPTs contaminated by a 

high number of false classification errors and then detecting 

the erroneously assigned MUPs was presented. Evaluation 

based on simulated data shows that the FDA–based SCC 

developed for discriminating between contaminated and 

non-contaminated MUPTs correctly detected around 88.7% 

of the contaminated trains. The results also revealed that the 

FCE detection algorithm can on average detect 84.4% of the 

FCEs in a given MUPT. However, the accuracy of both the 

SCC and the FCE detection method decreases as the 

percentage of MCEs in a MUPT increases. In addition, the 

sensitivity of the FCE detection algorithm in detecting an 

MUP erroneously assigned decreases as the similarity 

between the MUP and the MUP template of the MUPT 

increases. Nevertheless, the overall accuracy of the method 

(92.1%) is encouraging and suggests using the method 

during EMG signal decomposition to improve the results or 

to facilitate editing extracted MUPTs. 
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Figure 3. Sensitivity of the FCE detection algorithm in correctly detecting of 
a MUP erroneously assigned to a contaminated MUPT versus the 

pseudocorrelation (PsC) between the MUP and the template of the MUPT. 

 
 

 

 
Figure 1. Classifier fusion technique for MUPT validation. 

  

 
Figure 2.  Sensitivity of the FCE detection algorithm in correctly detecting 

FCEs in a contaminated MUPT versus the MCE rate of the train. 
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