
  

  

Abstract—In this paper, precordial lead reconstruction from 

a reduced set of leads is considered. We propose the use of 

independent component analysis to train patient-specific 

transforms from a reduced lead set to the six precordial leads 

of the standard 12-lead electrocardiogram. The proposed 

approach is applied to a publicly available database comprising 

549 ECG recordings of patients with varying cardiovascular 

conditions. The fidelity of reconstruction is measured using 

percent correlation between the actual and reconstructed 

signals following a 30 seconds time lapse. The mean correlation 

is over 95% with a standard deviation under 12.7% for all 

reconstructed leads. The results demonstrate the potential of 

the suggested approach to provide a reliable solution to 

precordial leads reconstruction. 

I. INTRODUCTION 

HE ElectroCardioGram (ECG) is the most common 

procedure for diagnosing cardiovascular problems and a 

critical tool for long-term monitoring of patients [1]. While 

most physicians prefer the diagnostic capabilities of 

traditional 12-lead systems, it is commonly not fully 

implemented for patient comfort and caregiver convenience. 

Past and recent work focused on developing ECG systems 

that maintain the same diagnostic ability of 12-lead ECG 

with a reduced number of leads. See [2-4] for examples. 

These systems reconstruct the missing leads from a set of 

basis leads using linear transforms. A set of universal 

coefficients for this transform would have been an ideal 

solution but it was proven to be an inaccurate approach 

because the coefficients are dependent upon numerous 

biological and environmental factors [5-6]. Population-based 

and patient-specific coefficients produce much better results 

than universal coefficients. Patient-specific coefficients 

perform better than population-based coefficients at the 

beginning of observation, and as the time of observation 

progresses, their performance becomes the same [7]. These 

results suggest that patient-specific coefficients could 

provide better performance. In this paper we investigate the 

use of Independent Component Analysis (ICA) to provide 

patient-specific coefficients for long term observations and 

lead reconstruction. 

ICA is used to represent a signal by a set of statistically 

Independent Sources (ICs). These sources (�) can be linearly 
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combined to recreate the original observations (�) through a 

mixing matrix (�) as seen below in (1): 

 � = ��. (1) 

The mixing matrix is square in most popular ICA algorithms 

in order to exploit the inverse matrix to shorten the time of 

convergence. ICA is very useful for biomedical applications 

because it can separate desired signals from unwanted 

signals, even if they are temporally or spatially correlated. It 

can be applied to biomedical signals so long as we assume 

that linear mixing of the sources occurs, which implies that 

the signal travels through the mixing medium and reaches all 

sensors simultaneously [8]. ICA has been used in separating 

maternal and fetal ECGs, filtering interference out of EEGs, 

and removing noise and artifacts from ECG signals with 

varying degrees of success [8-10]. Other blind source 

separation methods, such as Second Order Blind Source 

Separation (SOBI), exist but have not been used in ECG 

processing with as much frequency as ICA. 

Of the 10 electrodes used in a 12-lead system, the most 

problematic are the unipolar leads across the precordium, of 

which leads V3 and V4 can complicate diagnostic 

procedures, such as echocardiograms and chest x-rays, and 

the life-saving procedure of defibrillation [6]. Since the 

precordial leads have substantial redundant information due 

to proximity and since their sources can be approximated by 

a dipole, they are prime candidates for reduction by ICA. 

In this contribution, we propose and investigate 

reconstructing precordial leads in a patient-specific approach 

from their underlying sources using ICA. We are unaware of 

previous attempts to use ICA for ECG lead reconstruction.  

The rest of the paper consists of an overview of the 

Proposed Method in Section II, a summary of the Results in 

Section III when applying the approach to a well-known and 

publicly available ECG database, a Discussion in Section 

IV, and theConclusion in Section V.   

II. PROPOSED METHOD 

The proposed precordial lead reconstruction follows a 

multi-stage approach. First, preprocessing is performed on 

the ECG signal to condition it and to locate the QRS 

complexes. Next, a training sequence develops a set of 

patient-specific transforms from one pair of precordial leads 

to the others. Then, the excess electrodes may be removed 

and the algorithm will continue to reconstruct the missing 

leads. In what follows, each step is described in more detail. 
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A. ECG Dataset and Preprocessing 

The work presented in this paper used the Physikalisch-

Technische Bundesanstalt (PTB) diagnostic ECG database 

as made available through PhysioNet [11]. The database 

contains 549 ECG recordings from 290 subjects with a 

variety of diagnostic classes: 52 as healthy controls, 148 as 

myocardial infarctions, and the remainder with other cardiac 

diagnoses. For each recording, the 12 traditional and three 

Frank leads were captured simultaneously at a sampling 

frequency of 1 kHz. 

The preprocessing stage encompasses two steps: filtering 

and beat detection. A set of cascading digital filters were 

used. The first was a high-pass filter with a cutoff frequency 

(��) of 0.5 Hz to remove the baseline drift. The second was a 

low-pass filter with an ��of 150 Hz to reduce the amount of 

noise in the signal. Both filters were developed to meet AHA 

standards (outlined in [1]) using the Parks-McClellan 

algorithm. The filtered signal was then put through a QRS 

detection algorithm similar to the Pan-Tompkins QRS 

detection algorithm [12]. A moving average of 100 samples 

(100 ms) was taken of the square of the approximate 

derivative as obtained with the function seen below: 

 ��	
 = −��	 − 10
 − 2��	 − 5
 + 2��	 + 5
 + ��	 + 10
.(2) 

The resulting function was normalized and the peaks were 

found that had a value above the threshold of 0.125 and that 

occurred at least 200 ms from the previous peak. This length 

of time was selected because it is the minimum time 

between beats due to physiological limitations. Once the 

peaks were found, the beat domain was defined as spanning 

three-eighths the time between the current and previous peak 

and five-eighths the time between the current and next peak.  

B. Transform Training Sequence 

Leads V2 and V5 were used to reconstruct the other 

precordial leads due to their preferred use in past lead 

reconstruction work [3,13-14] and because we observed high 

levels of correlation between the ICs of various sets of 

precordial leads with those of V2 and V5. Using ICA over 

the two leads generated two ICs, which represent the 

underlying sources as a dipole.  

For training, we made use of all six precordial leads. The 

first valid beat was used as a training sequence to determine 

a transform between the ICs of leads V2 and V5 and the 

missing precordial leads V1, V3, V4, and V6. First, each 

lead had the mean removed and was normalized to unit 

variance. Then, the 4-by-2 mixing matrix was generated to 

reconstruct the four missing leads from the pair of ICs 

generated from leads V2 and V5. It was obtained by 

performing FastICA [9] on several sets of lead combinations 

that had previously shown to produce ICs that were highly 

correlated to those of leads V2 and V5. As part of the ICA 

solving procedure, mixing matrices are generated that relate 

the observations and ICs as seen in (1). The coefficients that 

make up the mixing matrices of (V1,V5), (V3,V5), (V2,V4), 

and (V2,V6) were used to create a new mixing matrix that 

could reconstruct V1, V3, V4, and V6, respectively. For 

example, the application of ICA to leads V1 and V5 resulted 

in the square mixing matrix as seen in (3). The elements 

relating to V1 were placed into a new 4-by-2 mixing matrix, 

which can reconstruct all missing leads from a set of ICs (4). 
 �������� = ���� ������ ���� �������� 

 

������������ 
! = "��� ������ ������ ����� �� 

# �������� 

 

Due to the non-ordered and sign-independent nature of 

ICA, the leads were sorted based upon the correlations of 

each lead combination’s set of ICs with the (V2,V5) IC pair. 

The sorted reconstruction mixing matrix, the original ICs of 

V2 and V5, and the transform matrix between the ICs and 

(V2,V5) were saved for future use. 

C. Reconstruction Sequence 

For reconstruction, we used leads V2 and V5 to 

reconstruct all other precordial leads. Each beat after the 

training sequence was handled in the following manner. The 

mean of the beat was removed and the variance normalized. 

Then, ICA was performed on V2 and V5, but instead of 

using a random initial mixing matrix for the iterative solving 

procedure in the FastICA algorithm, the original transform 

matrix was provided as an initial guess. This helped direct 

the solution to a similar set of ICs and shortened the time of 

convergence. 

Even though an initial guess was provided, the FastICA 

algorithm occasionally converged to a switched or negative 

IC pair, which was sorted in the following manner. The 

resulting IC pair and the original ICs that were generated 

during training were downsampled by a factor of 5 and 

compared. A correlation function was formed that was the 

sum of the absolute value of the correlations for the two 

possible configurations of ICs: 
 

     Config. 1         Config. 2 �|���(0)||���(0)|� ≈ �|���(0)||���(0)|�    �|���(0)||���(0)|� ≈ �|���(0)||���(0)|� 

 

Since the ICs were expected to match each other, 

configuration 1 was given a preferential weight of 1.25. The 

two functions were compared by the above metric and the 

set that had a higher maximum correlation was selected. The 

index of the maximum and individual correlation functions 

were used to determine if inverting the sign of the IC was 

required. Using the sorted ICs and the sorted reconstruction 

mixing matrix from the training sequence, V1, V3, V4, and 

V6 were reconstructed from the ICs of (V2,V5) using (4). 

D. Method of Comparison 

In order to compare the actual lead signals to the 

reconstructed signals, a percent correlation (1) was utilized 

as the figure of merit, which resembles the similarity 

(3) 

(4) 

(5) 
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coefficient used in [13]. The percent correlation metric was 

calculated per lead in the following manner: 
 

 1 = ∑ 3435464789∑ 34:6478 9∑ 354:6478 × 100% (6) 

 

where the index value = represents the samples within a beat 

of length > samples, ?@ is the original ECG signal, and ?5@ is 

the reconstructed ECG signal. A value of 100% represents 

perfect correlation between the two signals while lower 

values indicate a worse timing alignment. Correlation was 

used instead of other measures such as Root-Mean-Square 

Error (RMSE) because correlation speaks to how well the 

timing of the signals is aligned rather than the absolute 

value. In many applications of ECG, these timing features 

are much more critical than absolute values. 

 The original and reconstructed waveforms were compared 

at several time instances after the training sequence and the 

percent correlation values were plotted on a histogram. This 

allowed for a direct, visual comparison of the changes in the 

fidelity of reconstruction over time. 

III. RESULTS 

We ran the precordial lead reconstruction algorithm over 

548 of the 549 recordings in the PTB database from the beat 

immediately following the training sequence (t=0 sec) to the 

beat that occurred 30 seconds (t=30 sec) after the training 

sequence. One patient (s0377) was not used because the V1 

lead was removed mid-recording. The mean and variance of 

the distributions can be found in Table I.  
 

TABLE I 

Statistics of correlations between actual and reconstructed leads 

t V1 V3 V4 V6 

0sec µ (σ) 91.7 (12.4) 97.5 (4.8) 95.8 (7.6) 96.8 (4.7) 

30sec µ (σ) 91.5 (12.6) 97.0 (7.4) 95.2 (8.9) 96.5 (5.0) 

 

All leads were reconstructed with a high average 

correlation percentage and low variance. Leads V3 and V6 

had the best reconstructions on average (all above 96.4% for 

both 0 and 30 sec), followed by lead V4 (above 95.2% for 

both 0 and 30 sec). Lead V1 was reconstructed with the 

lowest average correlation percentage (over 91.5% for both 

0 and 30 sec) and the largest standard deviation (under 

12.7% for both 0 and 30 sec). This was expected as 

problems in the atrium have a stronger effect on the signal 

recorded by lead V1 than the other precordial leads due to 

V1’s proximity to that region of the heart [6]. V1 was the 

most problematic to construct in past works as well [6,14]. 

We found that the algorithm had difficulty accurately 

reconstructing irregular beats that were not present in the 

training sequence. This was due to either a change in ICs or 

an error in the sorting process and was most common in 

patients with dysrhythmia. When the irregular beats were 

reconstructed, they looked differently than the typical 

heartbeat of the patient but did not necessarily have the exact 

shape of the actual irregular beat. 

Fig. 1 presents an illustrative case of reconstruction of a 

patient 30 seconds after the training sequence occurred. For 

presenting an unbiased sample, we chose to present a pulse 

with reconstruction quality that most closely matches the 

mean correlation percentages, rather than the best 

reconstructed pulse. Due to the locations of V2 and V5, the 

interpolated leads, V3 and V4, were reconstructed the best 

and the extrapolated leads, V1 and V6, had larger 

reconstruction error [6]. If the patient had been diagnosed 

with a problem in the atrium rather than an anterior 

myocardial infarction, the reconstruction of lead V1 would 

have been much worse. 

IV. DISCUSSION 

The algorithm was tested up to 30 seconds after the 

training period, but even in that short amount of time, we 

were able to observe the adaptive nature of ICA. The 

reconstruction mixing matrix from the ICs to the precordial 

leads remained constant but the transform from (V2,V5) to 

their ICs changed with each beat. This feature results in a 

time-adapting and patient-specific transform from (V2,V5) 

to the other precordials that can effectively adapt to 

changing beat patterns. This is a clear advantage over static 

linear transformations. 

Although the precordial reconstruction worked on the 

majority of patients with a high level of fidelity, the system 

 
 

Fig. 1. Comparisons of actual precordial leads and those reconstructed 

from the ICs of leads V2 and V5. This patient (s0055) had the closest 

correlation values across all precordial leads to the mean of the database 

at 30 seconds after the training period 
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is susceptible to errors when patients have atrial conditions, 

which are most strongly detected in lead V1 [6]. Since the 

reconstruction is based on the signals recorded at V2 and 

V5, an issue that is present in lead V1 may not be accurately 

reconstructed. On the other hand, an error in lead V2 or V5 

will cause an error to be propagated across all reconstructed 

leads. For patients who have displayed signs of dysrhyhmias 

or have atrial conditions, it is suggested that lead V1 is not 

removed from the patient since it cannot be reliably 

reconstructed and is important for accurate diagnosis. This 

can be checked in the initial training phase when all six 

precordial leads are attached. The electrodes for lead V1, 

V3, V4, and V6 are removed after the transforms have been 

developed in the training phase. 

Due to a lack in consistent methods and metrics in 

previously published works, our reconstruction results are 

difficult to compare to other studies. Nelwan et al. [3] 

performed reconstruction of four missing precordial leads 

from V2 and V5 and found a median correlation of 0.964 for 

a general set of coefficients and 0.994 for a patient-specific 

set. These numbers are high for several reasons: first, they 

present the median correlation instead of the average, 

reducing the effect of outliers that were present in our 

results; second, the ECG waveforms that were used were the 

median complexes about a certain time; and third, all 

patients were of the same diagnostic class and the most 

difficult to reconstruct, patients with arrhymias and left 

bundle branch blocks, were excluded from the 

reconstruction test. In other work, the improved EASI 

coefficients as derived by [4] were used to reconstruct the 

precordials with varying degrees of success. The average 

correlations across the precordials with the improved 

coefficients range from 0.919 to 0.941, which fall below our 

calculated average correlation of 0.950. Also, our correlation 

calculations do not include leads V2 or V5, which would 

have perfect correlation because they did not need to be 

reconstructed. 

Inaccuracies in our proposed reconstruction can be 

reduced by using multiple training sequences rather than the 

single pulse used in this work. Elaborated training is an issue 

of further investigation.  

The spatial and temporal stationarity of the ICs for the 

precordials is to be explored in more depth. Body surface 

potential maps will be used to explore the effect of electrode 

misplacement on the ICs, and long-term precordial ECG 

recordings will enable us to view how the sources change 

over longer times. 

We performed our analysis on an offline database. When 

ICA is to be performed online, computational complexity 

should be considered as well. Considering available 

computational power on a host computer for processing the 

ECG signals and the fact that ICA has to be performed once 

for every heartbeat, we do not identify a practical limit on 

performing ICA online for lead reconstruction. 

Currently, the algorithm works by performing ICA in a 

blind source separation approach, which is moderately 

inefficient because in reality we know a substantial amount 

about the sources. Another path of work for the future will 

focus on applying a priori knowledge of the heart and chest. 

V. CONCLUSION 

In this work we presented a novel ICA-based patient-

specific method for reconstructing precordial leads from the 

ICs of V2 and V5. The reduced number of leads increases 

patient comfort and accessibility to the chest for diagnostic 

procedures, and unlike some other reduced lead systems, it 

utilizes electrode placements that caregivers already know. 

Our results show that patient-specific transform generation 

using ICA is an improvement over the static linear 

transforms that are currently under research. It possesses the 

ability to reconstruct all of the precordial leads from leads 

V2 and V5 and can adapt its transforms over time. 
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