
  

 

Abstract—In recorded EEG signals, the signal components 

under interest are typically embedded in noise and artefacts. 

Independent Component Analysis has been demonstrated to be 

very successful at signal-to-noise ratio enhancement and 

artefact suppression, but mainly on a large set of EEG channels 

(20 or more) and typically on signals from healthy young 

subjects. In this paper, we assess the artefact suppression 

performance of five different ICA methods (AMUSE, 

FASTICA, RUNICA, SOBI and THINICA) combined with 

four different spatial filters on reduced sets of EEG channels 

from elderly tremor patients. Results demonstrate that a 

suitable combination of ICA and spatial filtering can effectively 

suppress artefacts in clinical EEG signals, even on very small 

sets with only three EEG channels. 

I. INTRODUCTION 

N electroencephalographic (EEG) signals, the useful 

signal components of interest are typically embedded 

within the relatively large ongoing EEG activity and various 

artefacts that hinder its direct extraction [1, 2, 3]. Standard 

signal processing techniques, such as Wiener filter, adaptive 

noise cancellation, line enhancement, latency-corrected 

averaging, adaptive bandpass filtering and invertible wavelet 

transform filtering, have traditionally been proposed for 

signal-to-noise improvement in various electrophysiological 

studies [4, 5, 6]. However, these methods rely on a priori 

knowledge of the nature of the signal, usually assuming it is 

stationary. With EEG, the stationarity assumption still holds, 

but the a priori knowledge is usually not available. Thus, it is 

crucial to develop novel algorithms for online and adaptive 

enhancement of single trial EEG. 

Independent component analysis (ICA) and related 

methods, such as adaptive Principal Component Analysis 

(PCA) and Empirical Mode Decomposition (EMD) are 

promising approaches for single-trial Signal-to-Noise Ratio 

(SNR) enhancement [4]. They have already been 

successfully applied to EEG to efficiently remove 

physiological and nonphysiological artefacts [7, 8, 9, 10]. 

These methods automatically separate noise and artefacts 

from EEG, but their performances have typically been 

reported on a large set of EEG channels only (20 or more 

EEG channels) and using young, healthy control subjects. 

The performance of signal decomposition methods on highly 

reduced set of EEG data channels remains largely unknown, 
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particularly on real-world patient data recorded in clinical 

settings (i.e. during a routine epilepsy monitoring). 

Incidentally, such real-world clinical use is where the need 

for a reduced set of channels is the greatest, because it 

greatly simplifies the acquisition and processing of data (less 

electrodes needed, less time to set up the experiment, less 

channels to process).  

In this paper, we report the results of a systematic test of 5 

different ICA algorithms in combination with 4 different 

spatial filtering approaches, evaluated on EEG from 

experiments with elderly patients. Spatial filters were 

selected to produce different numbers of output channels, 

ranging from a large set with 28 EEG channels down to only 

3 EEG channels. Each pair of ICA and spatial filter was 

tested against its capability to suppress 6 different types of 

artefacts in the EEG signal. The results show that on a large 

set of EEG signals significant improvement in artefact 

suppression is achieved when ICA is used in addition to 

spatial filter. The same is also true for a reduced set of 

channels, but not for all ICA algorithms. 

II. METHODS 

A. Experimental session 

Four patients aged 64 ± 16 years (all male) were included 

in the study. Two suffered from Parkinsonian tremor and 

two from essential tremor.  The study protocol was approved 

by the local ethics committee and all patients gave informed 

consent. The protocol included the following tasks (each 

approximately 30 seconds in duration): 

1. Rest the arms on the lap (repeat three times). 

2. Keep the arms outstretched against gravity (repeat 

three times). 

3. Touch the nose with the fingertip (repeat three times). 

4. Rest the arm on the lap + chewing: three moderate 

up-down movements of the lower jaw in approx. 2 

seconds, repeated every 5 seconds. 

5. Rest the arm on the lap + lateral eye movement 

(patient‟s eyes are open): left-right-left movement of 

eyes in approx. 2 seconds, repeated every 5 seconds. 

6. Rest the arm on the lap + speaking: three 

pronunciations of the Spanish word “Teatro” in order 

to maximize the movement of the tongue. 

7. Rest the arm on the lap + head nodding: moderate up-

down-up-down movement of the head in approx. 2 

seconds, repeated every 5 seconds. 

8. Rest the arm on the lap + head shaking: moderate 

left-right-left-right movement of the head in approx. 

2 seconds, repeated every 5 seconds. 
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Surface EEG was recorded with 28 electrodes placed on a 

cap that conforms to the extended 10/20 standard (g.EEGcap 

[11]). The following positions were used: F3, F1, Fz, F2, F4, 

FC5, FC3, FC1, FCz, FC2, FC4, FC6, T7, C5, C3, C1, CZ, 

C2, C4, C6, T8, CP5, CP3, CP1, CPZ, CP2, CP4, and CP6. 

Along with the EEGs, 2-channel EOG and 2-channel surface 

EMG of both temporalis muscles were recorded. The ground 

was placed on the FCz position, and we used linked earlobes 

as a reference. The recorded signals were amplified 

(g.USBamp [11]), band–pass (0.5 - 60 Hz) and notch filtered 

(50 Hz, to remove power line interference), and sampled at 

256 Hz by a 24-bit A/D converter. 

B. Artefact annotation 

With the help of HD video and recorded EOG signals, 6 

different categories of physiological artefacts were manually 

annotated in EEG signals (artefacts due to lateral and 

vertical eye movements, blinking, facial movements, 

head/arm/leg movements and speaking). 

C. Spatial filtering 

Since spatial filtering of the EEG signal is usually 

recommended in order to reduce the noise and strengthen the 

neural signals [12, 13], we repeated the analysis four times, 

each time with a different spatial filter applied to the EEG 

(Table 1). Spatial filtering often results in reduction of the 

number of available data channels, thereby reducing the 

required processing effort. For example, the LP3 Laplacian 

filter (Table 1) gives only 3 filtered channels as output [14]. 
 

TABLE I 

LIST OF SPATIAL FILTERS USED IN THE ANALYSIS. 

Filter 

acronym 
Filter type 

Electrode regions 

used (see [13, 14]) 

Number of 

resulting 
channels 

CAR 
Common Average 

Rejection filter 
F, FC, C, CP 28 

LP12 Laplacian filter F, FC, C, CP 12 
LP5 Laplacian filter FC, C, CP 5 

LP3 Laplacian filter FC, C, CP 3 

  

D. Source decomposition methods 

Based on extensive literature review and preliminary 

evaluation of various artefact suppression algorithms the 

following ICA algorithms were selected as the most 

appropriate candidates for EEG artefact suppression: 

AMUSE, FASTICA (with “pow3” nonlinear function), 

RUNICA (Infomax), SOBI and THINICA. The Matlab code 

of these algorithms was downloaded as part of the toolbox 

[15, 16] or from the official web pages [17]. All algorithms 

were used with default parameter values. 

The capability of ICA methods for separating EEG signals 

from artefacts was evaluated with the help of artefact-to-

signal ratio (ASR) as defined in Eq. (1). For each of the 6 

different types of artefacts studied, the following ASR ratio 

for the i-th ICA component was computed: 

 

             
       

     

       
     

   (1) 

where xi(n)
 
denotes the samples of the i-th ICA component 

without any artefact (as indicated by manual annotation of 

EEG signals) and zi(n) stands for the samples of the i-th ICA 

component belonging to annotated EEG artefact of the 

investigated type. This metric was preferred over more 

investigated ICA performance measures such as the Amari 

index [18], as the latter can only be applied to simulated 

conditions. High values of the ASR metric represent cases 

with signal strongly corrupted by artefacts, whereas low 

ASR values indicate relatively clean EEG signal. 

All combinations of ICA and spatial filters were tested on 

a cluster of 15 personal computers, each equipped with a 3 

GHz Intel Core 2 Duo CPU and 2 GB of RAM. Results of 

the performance evaluation were examined separately for 

each spatial filter, ICA decomposition method, patient, 

experimental task and type of artefact, as well as aggregated 

over all those data. The results were tested for normality by 

a two-sided Kolmogorov-Smirnov goodness-of-fit test 

(Lilliefors test [19]), but the majority of data was not found 

to be normally distributed. The statistical significance of the 

results was therefore compared by the Wilcoxon signed rank 

sum test [19]. In all comparisons, the threshold for 

significance was set to P = 0.05. 

III. RESULTS 

Efficiency of artefact suppression was first tested 

separately for each artefact type and then jointly for all 

artefacts together. In each identified ICA component, ASR 

value as defined in Eq. (1) was first calculated for each out 

of six artefact types studied. This resulted in a vector 

a=[a(1), a(2), a(3)… a(N)] of N ASR values, where N 

denotes the number of spatially filtered ICA components. 

Each vector a was then normalized by its maximum value 

and its components were sorted by decreasing values, 

yielding a new vector b=[b(1), b(2), b(3)…b(N)] of N 

decreasing ASR values between 0 and 1. This procedure was 

repeated for all patients, tasks and types of artefacts, yielding 

4 (patients) × 8 (tasks) × 6 (artefact types) = 192 vectors b 

per each (spatial filter, ICA algorithm) pair. The i-th 

components of all 192 vectors b were then grouped into the 

same group Bi and their mean and standard deviation were 

calculated. 

Fig. 1 displays artefact suppression performance of the 

SOBI algorithm for all 6 annotated artefact types, evaluated 

on EEG data filtered by the LP12 Laplacian spatial filter. 

Different artefacts are suppressed in a very similar way, with 

the first few of the sorted ICA components (comp. 1, 2, 3, 4) 

containing the majority of the artefact energy, and the last 

few components (comp. 10, 11, 12) containing almost clean 

EEG signals. 

Results for all four spatial filters are presented in Fig. 2. 

All values that are significantly different from results of 

spatially filtered EEG with no decomposition applied 

(labelled with “noICA”) are marked with a „*‟.   
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Fig. 1. Normalized ASR for the SOBI algorithm applied to LP12 Laplacian spatial filter. Results are presented separately for all 6 artefact types,  

averaged over 32 different ASR values (for all patients and tasks). For easier comparison, ICA components are sorted by decreasing ASR.  

  
a)                                    b) 

 

 
c)                            d) 

Fig. 2. Normalized ASR for 5 selected ICA methods applied to 4 different spatial filters: CAR (a), LP12 (b), LP5 (c) and LP3 (d). The ASR values are 

normalized by their maximum and all ICA components are sorted by decreasing ASR (see the text in the first paragraph of Section III). Results are 

presented as averages ± std. dev. over 192 different ASR values (for all patients, tasks and artefact types). For clarity reasons, only up to 7 ICA 
components are depicted. Lower ASR values indicate more efficient artefact suppression. * - values are significantly different (Wilcoxon signed rank 

sum test, P < 0.05) from results of EEG with no ICA decomposition applied (marked as “noICA”). 
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IV. DISCUSSION 

A detailed comparison of the most frequent artefact types 

(Fig. 1) shows that, on a Laplacian spatial filter with 12 

output channels, all tested artefacts underwent similar level 

of suppression. However, on a closer examination, the 

effects of lateral eye movement, mouth movement and 

speaking were reduced most successfully, while arm 

movement artefacts were the most difficult to suppress by 

the tested ICA algorithms. Similar results were obtained for 

other spatial filters.  

In Fig. 2 all tested ICA methods displayed very good 

overall performance, with statistically significant artefact 

reduction in almost all depicted cases. Namely, all selected 

decomposition methods significantly outperformed tested 

spatial filters with no ICA applied. Improvement in ASR 

was most evident on a large set of EEG channels, especially 

when the CAR spatial filter was employed.  

The effectiveness of spatial filters in artefact suppression 

has already been demonstrated in the literature, particularly 

for the Laplacian filters [12]. Since applying the Laplacian 

filter to the EEG signal already reduces the effects of noise 

and artefacts, the additional improvement in ASR by ICA 

decomposition is less noticeable, but still significant (Fig. 2).  

The heavily reduced number of available EEG channels 

poses problems for some decomposition methods. When 

only three data channels were available (Laplacian filter 

LP3, Fig. 2d), FASTICA and AMUSE failed to produce 

statistically significant improvements over the “noICA” 

case. On the other hand, RUNICA, SOBI and THINICA still 

outperformed the Laplacian spatial filter. 

In Fig. 2, the ICA components were sorted in the 

decreasing ASR order. Therefore, the larger the distance 

between component 1 and other components in Fig. 2, the 

more successful the tested ICA algorithm is in clustering the 

artefacts into component 1. In the case of LP3 spatial filter 

and RUNICA/SOBI decomposition (Fig. 2d), components 2 

and 3 contained approximately 50% and 20% of artefact‟s 

energy present in component 1, respectively. Although not 

perfect, this represents significant improvement over 

Laplacian spatial filter with no ICA applied, where the 

second and the third filtered channel exhibited 58 % and 29 

% of the artefact‟s energy in the first component.  

Although important, computation complexity of tested 

ICA algorithms was not assessed in this study. First of all, 

the tested ICA algorithms were implemented in Matlab. 

Second, the cluster of 15 personal computers was used in our 

tests, hindering the exact assessment of processing time. 

Nevertheless, in our tests, AMUSE and SOBI algorithms 

exhibited the fastest convergence, whereas FASTICA, 

RUNICA and THINICA required substantially more 

processing power / time.  

V. CONCLUSION 

In conclusion, results of our analysis confirm that a suitable 

combination of ICA methods and spatial filtering techniques 

can effectively suppress artefacts in clinical EEG signals. 

This suppression is effective even when a very small number 

of EEG channels are used. When choosing the optimal 

combination of decomposition method and spatial filter for 

selected application, an informed compromise must be made 

between the number of required source components and the 

expected level of artefact presence. 
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