
 

 

 

  

Abstract— Brain Computer Interface (BCI) systems translate 

brain rhythms into signals comprehensible by computers. BCI 

has numerous applications in the clinical domain, the 

computer gaming, and the military. Real-time analysis of 

single trial brain signals is a challenging task, due to the low 

SNR of the incoming signals, added noise due to muscle 

artifacts, and trial-to-trial variability. In this work we present 

a computationally lightweight classification method based on 

several time and frequency domain features. After 

preprocessing and filtering, wavelet transform and Short 

Time Fourier Transform (STFT) are used for feature 

extraction. Feature vectors which are extracted from θ and α 

frequency bands are classified using a Support Vector 

Machine (SVM) classifier. EEG data were recorded from 64 

electrodes during three different Go/NoGo tasks. We achieved 

91% classification accuracy for two-class discrimination. The 

high recognition rate and low computational complexity 

makes this approach a promising method for a BCI system 

running on wearable and mobile devices. Computational 

profiling shows that this method is suitable for real time signal 

processing implementation. 

I. INTRODUCTION 

HE main objective for brain–computer interface (BCI) 

research is to provide communication channels to 

translate brain rhythms of an individual into application-

specific signals for computers. BCI’s allow a physically 

disabled person to use the mental process to communicate 

with external devices [1]. Therefore, it can provide an 

alternative means of communication to the people with 

neuromuscular disorders due to disease or spinal cord 

injury. However, the possibility of this communication 

channel depends on the quality and the robustness of the 

electroencephalography (EEG) signals and their associated 

signal processing methods. 

   There are three major steps involved with BCI systems: 

1) measuring neural signals from the brain, 2) Decoding 

brain’s state/intention from recorded signals, and 3) 

Mapping intentions into actions in the physical world.    

EEG is a non-invasive method for recording brain activity 

via electrodes placed on the scalp. The summed field 

potentials of the simultaneous firings of a large number of 

cortical neurons generate electrical activity. Some cognitive 

tasks generate characteristic EEG signals called Event 

Related Potential (ERP) in reaction to a stimulus. Using 
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this method brain activity can be interpreted by decoding 

EEG signals.  

   BCI algorithms that investigate decoding neural signals 

are divided into two main categories: cue-paced 

(synchronous) BCI and self-paced (asynchronous) BCI. 

The majority of existing EEG-based BCI are synchronous 

BCI’s in which the classification of brain signals is locked 

to a predefined time window, and the time of excitation or 

the arrival of the stimuli is known to the algorithm. An 

advantage of synchronous BCI is that the onset of mental 

activity is known in advance and associated with a specific 

stimulus. Although inferring intention based on an external 

stimulus is not the natural way of human-machine 

interaction, this knowledge is useful to boost the accuracy 

of the signal processing and intent detection. In modern 

neuroscience, researchers have been studying mental state 

identification based on single trial EEG signal processing. 

Single trial EEG signals which have very low signal-to-

noise (SNR) ratio create challenges for signal processing.  

   In BCI systems, brain activity patterns will be identified 

by a classification algorithm. Some popular machine 

learning techniques like linear discriminant analysis (LDA) 

[2, 3, 4], support vector machine (SVM) [5, 6, 7], or 

artificial neural networks (ANNs) [8, 9] are used as 

classifier. 

   An important advantage of using EEG -for brain imaging- 

is that it uses light sensors to allow near-complete freedom 

of movement of the head and body. Neural signals are 

everywhere much likes mobile phones. Advances in mobile 

phone technology have allowed phones to become a 

convenient platform for real-time processing of the EEG. 

The cell phone-based platform propels the mobility, 

convenience and usability of online BCI’s. There has been 

much effort developing accurate techniques for BCI 

systems [10, 11, 12]. However, in real time applications it 

is highly desirable to consider simpler mathematical models 

to reduce computational cost while maintaining adequate 

classification accuracy. Feature extraction is a major step in 

classification problems. Many algorithms such as 

Independent Component Analysis (ICA) [13, 14], Common 

Spatial Patterns (CSP) [7, 8, 14] are successful in feature 

extraction from EEG data. However, those techniques have 

large computational cost.  

   In this work, we implement a lightweight classification 

method for single trial EEG classification. Some simple and 

commonly used methods such as wavelet transform and 

STFT are used for feature extraction.  First, we apply a 

band-pass filter to remove high frequency and very low 
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frequency noise from the desired signals (>1Hz and <25 

Hz). There has been prior evidence that power in theta and 

alpha frequency bands vary when considering inhibition 

tasks [15, 16, 17]. Therefore, we consider theta and alpha 

bands for features extraction. An SVM classifier is used for 

classifying features. 

   In this paper, the EEG data were obtained from three 

different inhibition Go/NoGo tasks. The Go/NoGo task is a 

type of continuous performance neuropsychological test 

that has been designed to explore complex attention 

function such as response inhibition. Response inhibition 

refers to the ability to suppress responses that are no longer 

required or inappropriate. Each task includes Go items 

presented 80% of the time and NoGo items presented 20% 

of the time. Those tasks each require a different level of 

semantic abstraction to make a correct response: 1) The 

“Single” task includes one image of a car (Go) and one 

image of a dog (NoGo). In this task, an identical image is 

repeated, so the perceptual properties of the item stay 

identical. 2) The “Multiple” task contains multiple pictures 

of cars (Go) and multiple pictures of dogs (NoGo). 

Therefore, correct responses require identification across a 

category that can be accomplished by focusing on common 

perceptual features of the items (e.g. legs, wheels, eyes, 

windshields) and grouping them based on semantic 

representation (car, dog). 3) The “Semantic” task includes a 

wide range of dissimilar non-animals (Go) from categories 

of clothing, tools, furniture, and vehicles and a wide range 

of animals (NoGo), containing a spider, a worm, a lobster, 

and a dog. Fig. 1 shows the stimulus for Go and NoGo 

objects.  

 
Fig. 1 Sample of stimuli used across all three inhibition tasks. 

 

    The rest of this paper proceeds as follows: we will first 

provide an overview of the related literature in Section II. 

Methods and materials are explained in Section III. In 

Section IV, we discuss experimental results. Section V 

summarizes a discussion and directions for future work. 

II. PREVIOUS WORK 

BCI has been gaining much attention as a solution to 

convert brain signals to usable control commands. BCI’s 

can use a variety of electrophysiological sources. However, 

most of current BCI implementations rely on three main 

electrophysiological sources: motor imagery, steady-state 

visual evoked potential, and P300 potential. Many 

algorithms such as Independent Component Analysis (ICA) 

[9, 10] and Common Spatial Patterns (CSP) [7, 8, 9] were 

applied to motor imagery applications [7, 8, 9, 10]. 

Although the performance is suitable, the computational 

complexity creates challenges for real time implementation. 

Calculating power spectrum for different EEG frequency 

bands is a popular method in the literature [15, 18]. In the 

following, we provide an overview on the current state-of-

the-art signal processing techniques.  

   In [15], authors analyze changes in EEG power and 

synchrony between pairs of channels during the Go/NoGo 

task. They reported that common processes such as 

attention, and discrimination were characterized by 

changing power and synchrony in different frequency 

bands. These changes happen in different frequency bands 

for different time window during Go and NoGo. This 

information is useful for feature extraction design. 

   In [12], authors propose classification of three imagery 

movements. They used temporal filters and CSP for 

classification. The effects of imagery movements on 

measured EEG data are different for various frequency 

bands. The authors used temporal filters to decompose EEG 

signals to various frequency bands. They obtained a 

weighed combination of electrodes according to their 

importance in classification task. Although the method they 

proposed has 92% accuracy, it is complex in terms of 

computational power. Another disadvantage is the relative 

sensitivity to the artifacts.  

   M. Naeem, et al. in [13] applied several ICA algorithms 

in the preprocessing phase for four motor imagery tasks. 

They analyzed the performance of ICA algorithms on the 

overall classification task. Their results demonstrate among 

all ICA algorithms, the best performance was obtained 

using Infomax. The authors also used CSP for 

preprocessing to compare the results with Infomax 

algorithm. The results illustrate that CSP can improve the 

classification accuracy. They reported an overall accuracy 

of 76% for a four-class motor imagery task.  

   A method for classification of wrist movement imagery 

was proposed in [19]. The authors extracted key features 

for classification by applying spatial filtering (CSP method) 

on EEG signals in the gamma frequency band. They used 

radial bias function to classify features which were 

extracted by the spatial patterns to classify a four 

movement imagery task.  

   Authors in [7] proposed a Combination of CSP and SVM 

for classification of a three movement motor imagery task. 

They used CSP for feature extraction and SVM for 

classification. Features were then sent to SVM, and 

classified into left hand, right hand, or foot movements. An 

average recognition rate of 90% was reported. 

In [18], a method for classification of Bipolar Mood 

Disorder (BMD) and Attention Deficit Hyperactivity 
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Disorder (ADHD) based on EEG signals was proposed. 

The authors extracted several features such as band power, 

fractal dimension, AutoRegressive (AR) model coefficients 

and wavelet coefficients from EEG signals and used a 

group of classifiers for discrimination.  

Despite the current literature demonstrate an impressive 

body of work that proves the useful of BCI and signal 

processing in several application domains, researchers have 

not investigated computational profiling to possibly address 

issues associated with real-time and low power operation of 

BCI signal processing algorithms. 

III. METHODS AND MATERIALS 

A. Experiment and Data 

   Continuous EEG was recorded from 64 silver/silver-

chloride electrodes mounted within an elastic cap 

(Neuroscan Quickcap) which are placed according to the 

International 10–20 electrode placement standard 

(Compumedics, Inc.). The data was collected using a 

Neuroscan SynAmps2 amplifier and Scan 4.3.2 software 

sampling at 1 kHz with impedances typically below 10 kΩ. 

Blinks and eye movement were monitored via two 

electrodes, one mounted above the left eyebrow and one 

mounted below the left eye. The data were processed to 

remove ocular and muscle artifacts in the following way: 

First, poorly functioning electrodes were identified visually 

and removed. Second, eye blink artifacts were removed by 

a spatial filtering algorithm in the Neuroscan Edit software 

using the option to preserve the background EEG. Third, 

time segments containing significant muscle artifacts or eye 

movements were rejected. The EEG data were segmented 

offline into 2s epochs spanning 500ms before to 1500ms 

after the presentation of the visual stimuli. 

B. Frequency Decomposition using Wavelet 

   Analyzing frequency spectrum for different frequency 

bands is a commonly used method for single trial EEG 

classification [13, 14, 20]. These sub-bands are called delta 

(d), theta (θ), alpha (α), beta (β) and gamma (γ) bands. 

There are no strict frequency ranges for these different 

bands. In this paper, ranges are selected as follows: delta 

(0.5–4), theta (4–8), alpha (8–13), beta (13–25) and gamma 

(25–40). Wavelet transformation is a time-scale analysis 

method and has the capacity of representing signal’s local 

characteristics in the time and frequency domains. In the 

low frequency, it has a lower time resolution and higher 

frequency resolution, and in the high frequency, it has a 

higher time resolution and lower frequency resolution. As 

described earlier, the sampling frequency on our EEG data 

was 1 kHz. We used 7-level wavelet to decompose each 

trial to corresponding signals in different frequency bands. 

Fig. 2 shows the decomposition of each trial into signals 

with different frequency bands. After decomposition of 

signal, power spectral density for delta, theta, alpha and 

beta bands computed and for each band, maximum power 

extracted. In fact each time series converted to a 4-element 

vector. In [21], authors analyzed the influence of perceptual 

categorization on inhibitory processing by measuring N2-

P3 response in Go/NoGo task. They demonstrated that N2 

(a negative peak around 200ms following the visual 

stimuli) is found over fronto-central areas and P3 (a 

positive peak around 300ms following the visual stimuli) is 

a fronto-central component. They considered averaging 

across participants over frontal channels like Fz for N2 

component and over central electrodes such as FCz for P3 

effect. They showed that these two channels are good 

candidates to observe the N2-P3 responses in Go/NoGo 

task. Therefore, we consider the Fz, FCz, and Cz channels 

and use average signals of these channels for each trial in 

our processing.    

Fig. 2 Frequency decomposition of EEG trials using wavelet.  

C. Short Time Fourier Transform 

Short-Time Fourier Transform (STFT) is an extension of 

conventional Fourier analysis for non-stationary data. STFT 

performs Fast Fourier Transform (FFT) on consecutive 

segments or blocks of data that are assumed stationary, and 

is equivalent to a sliding window that analyzes the local 

frequency content of the signal. The STFT for signal x(τ) 

windowed by a fixed-length function w(t - τ) is defined by 

(1). STFT power or energy, Px(t, f) is defined in (2). 
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   In our analysis, we use a 1s window and 90% overlap for 

the STFT. Length of each trial is 2s spanning 500ms before 

to 1500ms after the activation of the stimuli. The STFT was 

applied to average of selected channels (Fz, FCz, Cz) of 

each trial from 500ms to 2s by 1s windows and with 90% 

overlapping. The first window spans from 500ms to 

1500ms and the next window is shifted 100ms covering 

600ms to 1600ms. Fig. 3 illustrates the sliding window on 

which the STFT is applied. Neuroscientists have indentified 

that the effect of cognitive task appears on EEG signals 

often 300ms after the visual stimuli [15, 21]. Therefore, we 

particularly select the first four windows which cover 

300ms after the stimulus. Output of STFT is the power of 

signal in different frequency bands and time segments. For 

this work, we consider the frequency band of 3-14Hz that 

covers theta and alpha bands.  

4428



 

 

 

 

 

 

 

 

 

Fig. 3 Sliding windows for STFT. 

D. Feature Extraction 

   Features that we used in this paper are a combination of 

band power and STFT features. Each trial represented with 

a feature vector containing 8 elements (4 band power and 4 

STFT features).  In this work, our analysis is based on 

single subject training and testing. For each subject, the 

data were divided into train and test sets, half of the data 

were used for training and the other half for testing. 

E. Classifier 

A comprehensive review of classifiers for BCI is 

presented in [22] with many classifiers such as Linear 

Discriminant Analysis (LDA), Support Vector Machine 

(SVM), Neural Networks (NN), and Hidden Markov 

Models (HMM). In this work, we use SVM classifiers for 

several reasons including good generalization properties, 

insensitivity to overtraining, and robustness to the curse-of 

dimensionality. The SVM approach offers an effective 

classification strategy in separating input feature vectors 

and has been used in many different applications [23]. In 

SVM, the input vector x is projected into a scalar value f(x) 

as,  

��	 
 	∑  !"!#�! , 	 $ %&
!'(    (3) 

where yi ={-1, 1}, the vectors xi are support vectors, N is 

the number of support vectors, αi are adjustable weights, b 

is the bias term, and the function #�! , 	 
 	∅�!	
* . ∅�	  

is the kernel, where ∅�. 	 is a mapping from the input space 

to a high dimensional space which creates nonlinear 

decision boundaries.  

F. System Architecture 

   In this study, we implement a computationally light-

weight classification method for single trial EEG. First, the 

baseline is removed, that is, the average of baseline 

segment (0-500ms) for each trial is subtracted from all 

samples of the same trial. Then the data are re-referenced to 

the average potential over the entire head. In the next step 

we apply a band-pass filter (1-25 Hz) to eliminate high 

frequency and very low frequency noise. Then we use 

wavelet transform and STFT to extract features. Based on 

the training data, we determine the SVM classifier model 

parameters and use the model for testing.  Fig. 4 shows the 

block diagram of our classification method. 

IV. CLASSIFICATION RESULTS 

   Table I reports the classification results on data acquired 

from 5 subjects for Go/NoGo tasks. The first two rows 

show the classification results for each feature set (i.e. band 

power, and STFT) applied to the EEG signal. The third row 

shows the results of a combination of the two feature sets. 

As we generally expect, combining the two features sets 

will enhance the recognition accuracy.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Architecture for the classification system. 
 

TABLE I 

CLASSIFICATION ACCURACY FOR DIFFERENT FEATURES WITH INDIVIDUAL 

SUBJECTS 

 

 

 

 

 
 

 

 

 

  The main advantage of our proposed signal processing is 

its low computational complexity in comparison to other 

techniques that use ICA or CSP. Computational complexity 

of a signal processing algorithm is a measure of power 

consumption. Enhancing wearability, portability, and 

durability are three major important objectives in design 

and development of wearable and power aware BCI 

devices. Lowering the power consumption translates to 

reducing the size of the battery, the form factor, and 

improving the wearability of the device. In order to reduce 

the power consumption of a real-time BCI, we need to 

examine the computational complexity of BCI algorithms, 

and if possible, techniques that will reduce the 

computational complexity are deployed. Therefore, it is 

desirable to consider the computational cost and the 

accuracy of BCI systems at the same time. We extracted the 

computational complexity of the signal processing method 

described in this paper, which will provide guidance for 

hardware implementation. Table II shows the 

computational complexity of this work and other widely 

used methods for our setup. Complexity measures are 

obtained in terms of FLOPS (FLoating point OPerations 

per Second). It is shown in Table II that our feature 

extraction method requires lower computational power in 

comparison to ICA and CSP while maintaining a promising 

recognition rate.     

        Subjects 
 Features 

A1 A2 A3 A4 

Band Power            77.14        95        83.33       80.56         67 
Short Fourier          94.29        77         75             75            72 
Combination          94.29        97.5      91            86.11        83 

A5 

Baseline Removal & 
Re-referencing 

Band Pass filter  
(1-25 Hz) 

 

 

Band Power 

 

STFT 

Feature  
Extraction 

SVM Classifier 

Raw EEG data 

STFT 
(Window: 1s, Overlap: 900ms) 

Times 

1s 

 

900ms 

500ms 

Baseline 
100ms 

0 2000ms 
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V. DISCUSSION AND FUTURE WORKS 

   In this work a classification method for single trial EEG 

was implemented by using light-weight signal processing 

algorithms. We used features that were extracted based on 

band power and STFT. In order to classify incoming EEG 

trials, SVM classifiers were used. Results of our 

investigation on Go/NoGo tasks show that a classification 

accuracy of 91% can be achieved using relatively low 

computationally intensive algorithms. In future, we will 

implement the proposed algorithm on a mobile device and 

will assess the power and accuracy trade-offs. 
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COMPARISON OF COMPUTATIONAL COMPLEXITY OF CURRENT WORK 

VERSUS ICA AND CSP METHODS 
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