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Abstract— Reflex stiffness is often modeled as a Hammerstein
system comprising a cascade of a static nonlinear element
and a linear dynamic element. The nonlinearity is frequently
modeled as a half wave rectifier so that changes in the reflex
response can only be modeled by changes in the parameters of
the linear element. This is an oversimplification since there
are physiological mechanisms that could change both the
threshold of the nonlinearity and the linear dynamics. This
study explores the ability of a new subspace identification
algorithm to distinguish changes in parameters of the nonlinear
element from those of the linear element. Simulation studies
demonstrate that the method does so very effectively even in the
presence of substantial output noise. Pilot experiments in which
the method was applied to stretch reflex EMG data revealed
that both the threshold of the nonlinearity and the gain of the
linear element change with muscle activation.

I. INTRODUCTION

Joint stiffness defines the dynamic relation between the
position of the joint and the torque acting about it [1].
Studying joint stiffness is of great importance due to its
applications in many fields. Consequently, identification of
its dynamic behavior has been extensively investigated in the
past years in many joints [1], [2], [3].

Joint stiffness consists of two components. The first is the
intrinsic component which is due to mechanical properties of
the limb, joint, tissue and active muscles. The second is the
reflex component which originates from the stretch reflex arc
[1]. Some years ago our laboratory demonstrated that ankle
joint stiffness could be described well by the model shown
in Fig. 1 [4]. In this model, the total joint torque is the sum
of the outputs of intrinsic and reflex pathways. The reflex
path is modeled as a nonlinear-linear (NL) cascade system
(a Hammerstein structure) which relates the joint velocity
to the reflex torque. The nonlinearity resembles a half wave
rectifier. The linear component of the reflex path is a second-
or third-order system with a delay of about 40 ms [5].

The nonlinearity in the reflex path reflects the unidi-
rectional velocity sensitivity of the stretch reflex. Previous
studies showed that the nonlinearity in the reflex path of
the ankle joint resembles a half wave rectifier [6], [5]. In
other words, there is a reflex response when the extensor
muscle is stretched but no response when it is shortened.
Other studies such as [2], [3] assumed a more complex shape
for the nonlinearity in elbow joint reflex stiffness.
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Fig. 1. Parallel-cascade model of ankle joint stiffness.

Our laboratory showed that the reflex response at the ankle
changes with joint position and/or level of muscle activation
[5]. The nonlinearity was assumed to be a half-wave rectifier,
so all changes in the reflex response were attributed to the
linear system parameters, i.e., gain (G), damping parameter
(ζ) and natural frequency (ωn). However, it is also possible
that the shape of the nonlinear element might change with
joint position and/or level of muscle activation, e.g., changes
in the threshold. Thus, physiological mechanism such as the
motoneuron pool excitability and static fusimotor activity
could change the reflex threshold. Conversely, presynaptic
inhibition, changes in interneuronal activity, and dynamic
fusimotor activity might modulate the gain of the reflex path
[7], [8]. Consequently, it is important to be able to distinguish
between these two types of changes.

In this work, we apply a recently developed Hammerstein
identification algorithm [9] and evaluate its performance in
distinguishing between the estimation of the threshold of
the nonlinearity from the gain of the linear component.
Subsequently, we apply the new algorithm to experimental
data and study the behavior of the reflex EMG as a function
of muscle activation level.

This paper is organized as follows: Section II provides
the problem formulation of a Hammerstein system and
discusses the advantages of the new identification algorithm.
Section III provides the result of simulation using a model
of stretch reflex. Section IV presents the experimental results
and Section V provides some concluding remarks.

II. PROBLEM FORMULATION AND IDENTIFICATION
ALGORITHM

A single-input-single-output SISO Hammerstein system
consists of a zero memory static nonlinearity followed by
a linear system as illustrated in Fig. 2 [10]. The nonlinearity
can be approximated by a basis function expansion (power
polynomial, Tchebyshev, Hermite, etc) as:

w(k) = f (u(k)) '
n∑
i=1

αigi (u(k)) (1)

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 4431

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



 
Static nonlinearity Linear dynamic system 

( )( ) ( )w k f u k=  
( 1) ( ) ( )

( ) ( ) ( )
x k Ax k Bw k

y k Cx k Dw k
+ = +

 = +
 

( )u k  ( )w k  ( )y k  

Fig. 2. Hammerstein system model.

where, gi(·) is the ith basis function and αi is its cor-
responding coefficient. Then, as shown in [11], the total
Hammerstein model can be formulated as a MISO state space
model: {

x(k + 1) = Ax(k) +BαU(k)

y(k) = Cx(k) +DαU(k) + n(k)
(2)

where, U(k) is a vector of inputs constructed by a basis
function expansion as [g1(u(k)), · · · , gn(u(k))]T where gi(·)
is the element of the expansion. n(k) is the additive noise,
x(k) is the state vector, A, C are the matrices of the linear
part and Bα and Dα are:

Bα =

 b1α1 · · · b1αn
...

. . .
...

bmα1 · · · bmαn

 (3)

Dα =
[
dα1 · · · dαn

]
(4)

where {b1, · · · , bm} and {d} are the parameters of the linear
state space matrices, i.e., B and D. Note that each element
of these matrices is related to the parameters of both the
linear and nonlinear elements.

This formulation transforms a SISO Hammerstein model
to a MISO linear system whose state space matrices can be
estimated using the method described in [11]. In particular,
at the first step, it estimates the matrices A and C using a
subspace approach. Then, it estimates the elements of Bα and
Dα using a least square approach. However, each element
of Bα and Dα is related to the parameters of both the
nonlinear component and the linear part. Therefore, while
the resulting model predicts the output well, it provides
no insight into the elements of interest. This is important
because in biomedical applications, it is often of interest
to understand the underlying system rather than simply to
construct a model that can predict the output well [9].

We recently developed an algorithm that estimates the
parameters of the nonlinearity (αi, i ∈ 1, · · · , n) from
those of the linear part, i.e., (bj and d, j ∈ 1, · · · ,m).
This approach formulates the problem using the minimum
number of parameters required in the state space model in
a nonlinear optimization framework. It then solves the op-
timization problem using an iterative least square approach.
Since it uses the minimum number of parameters and the
global convergence of the nonlinear optimization problem is
guaranteed, we expect it to be very robust in the presence of
large output noise [9].

III. SIMULATION ANALYSIS

A. Input Signal

The frequency and amplitude structures of the input signal
play an important role in system identification. Due to
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Fig. 3. Input signal used for simulation: (a) A realization of the position;
(b) A realization of the velocity; (c)Probabilty distribution of the velocity.

the presence of nonlinearities in the joint stiffness system,
the amplitude structure of the input velocity is particularly
important, since the mean absolute velocity must be low to
preserve the stretch reflex [1], [12] .

A position input signal used frequently in the identifica-
tion of joint stiffness is a stochastic binary signal (PRBS)
with small amplitude around a desired operating point. The
histogram of its velocity shows only three distinct levels
corresponding to zero, positive, and negative velocities [13].
While this type of input excites the linear system well,
its amplitude structure is not rich enough to estimate the
static nonlinearity properly. With three input levels an infinite
number of polynomials can be fit between these three levels.
To address this, we used a position input compromising
samples from a uniform distribution at 300 ms as shown in
Fig. 3. The probability distribution of the resulting velocity
has a much richer set of values which should result in more
effective estimation of the shape of the static nonlinearity.

B. Method
The performance of the algorithm was evaluated using

simulation of the small signal model of stretch reflex stiffness
of the human ankle shown in Fig. 4. The nonlinearity
comprised a threshold t1 described by:

f(u(k)) =
(u(k)− t1) + (u(k)− t1)sgn(u(k)− t1)

2
(5)

where sgn is the sign function. The continuous-time transfer
function of the linear element was:

H(s) =
e−tdsGrω

2
n

s2 + 2sζωn + ω2
n

(6)

where s is the Laplace variable, Gr is the linear system’s
gain, ζ is the damping parameter and ωn is the natural
frequency of the second order system. There is also a delay
of td seconds.

The parameters of the Hammerstein system were: Gr =
25, ζ = 0.98, ωn = 20, td = 0.04 and t1 = 0 values similar
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Fig. 4. Hammerstein model of reflex stiffness.

to those derived previously from experimental data [5]. The
model was simulated in MATLAB Simulink at 1 KHz for
sixty seconds. The simulated input and output signals were
decimated to 100 Hz. Realizations of Gaussian, white noise
were added to the output to simulate experimental noise; the
amplitude of the noise was adjusted to generate the required
signal to noise ratio (SNR).

The performance of the new algorithm was compared to
that of two other well-known algorithms for Hammerstein
system identification-Hunter-Korenberg H-K [10] and sepa-
rable least squares SLS algorithms [13].

C. Results

Fig. 5 shows the models estimated by the three methods
obtained with a SNR of 5 db. The nonlinearities estimated
by subspace and SLS algorithms closely resembled the the-
oretical half wave rectifier (Fig. 5(a)). Similarly, the impulse
response functions (IRF) estimate for the linear component
of the model estimated using subspace and SLS were very
similar to that used in the simulation, Fig. 5(b). In contrast,
the nonlinearity estimated using H-K was not similar to
the simulated half-wave rectifier and the estimated IRF was
different. The similarity of the predicted reflex torque to the
noise free output was quantified in terms of the variance
accounted for (VAF). We found VAF of 99.8%, 99.6%,
79.2% for subspace algorithm, SLS and H-K respectively.
These simulation results demonstrate that H-K gives biased
results in the presence of large output noise.

Next, we compared the efficiency of the algorithms in
estimating the linear component. To do so, t1 was set to zero
and the linear system gain was varied from 10 to 40 and SNR
was fixed at 5 db. We then used Monte-Carlo simulation with
100 trials at each gain. We compared the estimated IRF to the
simulated one in terms of VAF between the estimated and
simulated IRFs for the three algorithms. Fig. 6 shows the
mean value of the VAF bracketed by its standard deviation.
The subspace algorithm performed the best. It had the highest
VAFs and the lowest variance, indicated by the error bars.

Another set of Monte Carlo simulations were carried out
to assess the ability of the algorithm to distinguish between
changes in gain and threshold. The linear system gain Gr and
nonlinearity threshold t1 were varied systematically and 100
trials were simulated at each threshold/gain combination. We
modeled the estimated static nonlinearity by the parametric
equation (5). Fig. 7(a) presents the mean value of the pre-
dicted gain. Fig. 7(b) shows the random error associated with
each operating point i.e., the standard deviation of the error
in the parameter estimate. Fig. 7(c) and (d) shows the results
for the identification of the threshold. It is apparent that the
gain and threshold were estimated reliably and independently
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Fig. 5. Identified models of stretch reflex from simulation data.
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Fig. 6. The accuracy of the estimated linear model IRFs.

To quantify these results we fitted planes to the data shown
in Fig. 7 and to corresponding results for the SLS and HK
methods. Ideally these should have a slope of 1 for the gain
and threshold (Fig. 7 (a), (c)). The results are summarized in
table I. The subspace and SLS methods accurately separated
the gain and threshold (i.e. slopes were close to 1), while the
H-K method was quite biased. The SSE using the subspace
algorithm was smaller than that for SLS demonstrating that
the random error associated with the estimation was smaller
using subspace.

IV. EXPERIMENTS

A. Method

To evaluate the performance of the algorithm under prac-
tical conditions we used it to estimate the dynamic relation
between ankle velocity and reflex EMG in the triceps surae.
This relation has been modeled previously as a Hammerstein
system involving a unidirectional, rate sensitive nonlinearity.

The experimental methods were similar to those described
in [4], [5], [13] except that the input signal was that used

TABLE I
ESTIMATION OF GAIN AND THRESHOLD

SLS H-K Subspace

Gain
Slope 1.031 0.5339 1.024
SSE 2184 8474 1525

R-square 0.9951 0.9365 0.9966

Threshold
Slope 1.03 0.6297 1.059
SSE 0.5078 1.7380 0.2288

R-square 0.9846 0.8748 0.9934
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Fig. 7. Estimation accuracy of the Hammerstein model; (a) mean value of
the predicted gains; (b) random error associated with the estimation of gain;
(c) mean value of the predicted thresholds; (d) random error associated with
the estimation of threshold.

in Section III. Two subjects were recruited and gave in-
formed consent to the experimental procedures, which had
been reviewed and approved by McGill University Research
Ethics Board. Lateral and medial Gastrocnemius EMGs were
recorded using surface electrodes. The mean angle of the
ankle joint was set to neutral position (90 degrees). Ankle
torque was low-pass filtered in real time and provided
to the subject as visual feedback signal; the subject was
asked to maintain a constant torque. Data were recorded for
sixty seconds at sampling frequency of 1000 Hz and then
decimated to 100 Hz for analysis.

The subjects were then asked to maintain three torque
levels 5% MVCD, 0%MVCD, 5%MVCP, where MVC is
the maximum voluntary contraction torque recorded in the
plantar or dorsiflexsion directions.

B. Result

Fig. 8 shows the Hammerstein system estimated between
the velocity and EMG for a typical subject with the new al-
gorithm. It is evident than during plantarflexing contractions,
when TS muscle was active, i.e., 5% of MVCP, the threshold
was close to 0 and the amplitude of the IRF was large.
This is consistent with previous findings [5]. However, when
the muscle was at rest, the threshold increased significantly
as evidenced by the shift in the nonlinearity to the right
while the amplitude of IRF dropped to around 2. During
dorsiflexing contraction, i.e., 5% of MVCD, the amplitude
of the IRF decreased further while the threshold was located
between the two previous cases.

V. CONCLUSIONS

We showed that the new algorithm can successfully sepa-
rate and estimate changes in the threshold of the nonlinearity
from changes in the gain of the linear subsystem. In compar-
ison with other algorithms it is more robust in the presence
of output noise and provides more accurate results.
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Fig. 8. Hammerstein models estimated from reflex EMG at different torque
levels.

In practice, it is not possible to measure reflex torque
independently since the torque recorded is the summation
of voluntary, reflex and intrinsic components. Consequently,
we used EMG as the output since it is an indicator of muscle
activity but not related to the intrinsic response. Hence, the
performance of the algorithm was evaluated using the EMG
from triceps surae (TS). The results showed that the threshold
remains close to zero while the TS muscle is active and is
positive otherwise. The gain was higher when TS was active
than while the muscle was at rest or TA was active.
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