
  

  

Abstract—The objective of this study is to develop a method 
of discriminating real-time motion from electromyogram 
(EMG) signals. We previously proposed a motion 
discrimination method. This method could discriminate five 
motions (hand opening, hand closing, hand chucking, wrist 
extension, and wrist flexion) at a rate of above 90 percent from 
four channel EMG signals in the forearm. The method prevents 
elbow motions from interfering with hand motion 
discrimination. However, discrimination processing time of this 
method is more than 300 ms, and the shortest delay time that is 
perceivable by the user is generally regarded to be roughly 300 
ms. Furthermore, a robot hand has a mechanical delay time. 
Thus, the discrimination time should be less than 300 ms. Here, 
we propose a real-time motion discrimination method using a 
hyper-sphere model. In comparison with the old model, the 
hyper-sphere models can make more complex decision regions 
which can discriminate at the state of the motion. Furthermore, 
this model can learn EMG signals in real-time. We 
experimentally verified that the discrimination accuracies of 
this method were above 90 percent. Moreover, elbow motions 
did not interfere with the hand motion discrimination. The 
discrimination processing time was less than 300 ms, and was 
about 30 percent shorter than that of the old method.  

I. INTRODUCTION 
yoelectric prosthetic hands, which are controlled by 
electromyogram (EMG) signals, have good 

functionality and appearances. However, many myoelectric 
prosthetic hands can perform only two motions (opening and 
gripping of the hand); they perform one motion when one 
muscle contracts, such as opening when the wrist extensor 
muscle contracts and closing when the wrist flexor muscle 
contracts. Moreover, myoelectric prosthetic hands must be 
adjusted to individual users because the EMG signals vary 
from person to person. To improve myoelectric prosthetic 
hands, it is effective to use methods that can automatically 
adjust prosthetic hands to users by learning EMG signals and 
discriminate hand motions by the signals for controlling it. 
Many researchers have studied the discrimination methods 
[1]-[4]. Artificial neural networks have been used in these 
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studies because they take into account the nonlinearity of 
EMG signals, but these methods take a long time to learn the 
EMG signals. Thus, it would be useful to automatically adjust 
prosthetic hands to users by learning the users’ EMG signals 
and use the hand motions discriminated by the signals for 
controlling the limbs. 

In previous research, we devised a hand discrimination 
method using conic models, which can learn EMG signals in 
real time [5]. We proved that this method could discriminate 
five hand motions (hand opening, hand closing, hand 
chucking, wrist extension, and wrist flexion) at a rate of 
above 90 percent from four channels EMG signals in the 
forearm. Moreover, elbow motions do not interfere with hand 
motions. However, the discrimination processing time of this 
method is more than 300ms. The shortest delay time that is 
perceivable by the user is generally regarded to be roughly 
300 ms. 

We propose a real-time motion discrimination method 
using hyper-sphere models. We verified this method by 
controlling a 3D hand model on a PC. We experimentally we 
verified the discrimination accuracy and discrimination 
processing time by comparing these values with ones 
obtained from previous models. We found that the proposed 
method can prevent incorrect discrimination that elbow 
motions cause.  

II. THEORY 
Figure 1 shows the motion discrimination system. This 

system consists of processing (high-pass filter, notch filter, 
rectification, and moving average), feature extraction, and 
discriminator parts. Quadratic polynomials are used to extract 
the features of the discriminated motions from the processed 
EMG signals. Conic and hyper-sphere models discriminate 
five motions by using the extracted features. The feature 
extraction using the quadratic polynomials increase the 
discrimination accuracy. 

 
Fig. 1 Motion Discrimination 
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A. Signal Processing 
Figure 2 shows the low-pass filter (zero phase lag), and the 

summed EMG signals smoothed by using 100-, 150-, and 
300- points moving averages. The summed EMG signals 
smoothed by the 100-point moving average are about 50 ms 
later than the low-pass filter, those smoothed by the 150-point 
moving average are about 75 ms later, and those smoothed by 
the 300-point moving average are about 150 ms.  Moreover, 
the delay caused by the high-pass filter and the notch filter is 
about 20 ms. Thus, it is apparent that the smoothing causes a 
large delay. 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2 Filtering Delay 

B. Feature Extraction 
Figure 3(a) shows an example of the decision regions for 

the conic models in feature space in the case of discriminating 
motions i and j. The shaded regions in the figure are the 
decision regions corresponding to these motions, the dashed 
lines are the boundaries of the decision regions, and the solid 
lines are the trajectories of the EMG signals when the motions 
are performed. The trajectories start from near the origin then 
return to this point because EMG signals are weak when the 
muscles don’t contract and become strong when the muscles 
contract. The tops of the cones are the amplitudes of the EMG 
signals when the muscles don’t contract and the cone-shaped 
decision region is located in such a way as to wrap around a 
trajectory corresponding to motions i, j. Because the 
trajectories corresponding to elbow motions are far from the 
trajectories of discriminated motions, the conic models 
prevent incorrect discriminations about elbow motions.  
However, as shown in Fig. 3(b), the decision regions become 
small for motions with similar trajectories. Because of this, 
quadratic polynomials are used to project the trajectories of 
motions into a feature space that has large enough decision 
regions. 

 
(a)                                               (b)  

Fig. 3 Examples of Decision Regions using Conic Models 
 

1) Quadratic Polynomials: The quadratic polynomials are 

used to extract a feature of each discriminated motion from 
the EMG signals. The feature corresponding to a motion takes 
on the biggest value when the motion is performed. The 
quadratic polynomials are used for every motion model.  

The feature fqi corresponding to motion i is expressed by 
taking the amplitudes of the EMG signals that are full-wave 
rectified and smoothed after being measured from L channels: 

                                                                                         (1) 

where a, b and c are coefficients. These coefficients are 
determined by using by the least squares method and a target 
signal that is generated by the method described below. 

2) Generation of Target Signal: A target signal is needed 
when determining the coefficients with the least squares 
method. The target signal tsn is generated as follows. Each 
motion is performed once, and the sum S of the EMG signals 
of each channel is calculated. It is assumed that there are L 
channels of EMG signals and N motions are performed. 

                                                         (2) 

Since the EMG signal produces a peak whenever a motion 
is performed, S produces N peaks. The n-th peak corresponds 
to the n-th motion. The target signal corresponding to motion 
n is calculated as follows: 

        (3) 

where i (i = 1, …, n, …, N) is the number of peaks, d is a 
coefficient which takes a value of between 0 to 1, and e is the 
threshold value of S. The target signal is taken to be 0 while S 
is below e. It reaches a maximum when a corresponding 
motion is performed. Because the EMG signals can be 
measured and the teaching signals can be calculated in real 
time, coefficients can be updated without taking up any 
learning time. 

C. Motion Discrimination 
The location of the cone-shaped decision regions are 

determined by using conic models. The conic models 
generate signals that have a positive value when a certain 
motion for discrimination is performed and a negative value 
when other motions for discrimination and elbow motions are 
performed. These signals are called motion signals. A conic 
model is composed for each motion. The discrimination result 
is the motion corresponding to the motion signal that has the 
largest positive value. 

1) Conic Model: A motion signal using a conic model 
corresponding to motion i is expressed as follows: 
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where c = (c1, …,cn, …, cN) is a vector that indicates the top of 
a cone, ai = (ai1, …,ain , …, aiN) is a unit vector that indicates 
the center line of a cone and 

iω  is the vertex angle of a cone. 
Note that c is the amplitude of the EMG signals when muscles 
don’t contract, and ai is the normalized amplitude of the EMG 
signals offset by c when EMG signals are at a peak as a result 
of performing motion i. c and ai are obtained in real time. 
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The vertex angle iω  can be determined from only the 
positional relation of trajectories corresponding to motions 
for discrimination. Figure 4 shows trajectories corresponding 
to motions i, j and k. First, we calculate the half angles 
between the center line corresponding to motion i and other 
motions. Next, we select the minimum half angle to 

iω . The 
above method is formulated as follows. 
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Fig. 4 Method for Obtaining the Vertex Angle of the Cone 
 

2) Hyper-Sphere Model: 
Figure 5 shows the decision regions created by the conic 
model and hyper-sphere model. The conic model (Fig. 5(a)) 
considers the motion trajectories to be linear, by smoothing 
EMG signals, and it is used to create decision regions. But, it 
might take time for a trajectory to enter a cone, as shown in 
the trajectory of motion 2 of Fig. 5(a), because the actual 
trajectories are nonlinear. This causes the discrimination 
processing time to increase. Then, we consider the creating of 
decision regions focused on the rising edge of the motion.  

Figure 5(b) shows an example of the decision regions 
created by using the hyper-sphere model. The feature 
trajectory enters in the decision region quickly even if a 
complex feature trajectory is drawn ; this leads to a shorter 
discrimination processing time. Moreover, the hyper-sphere 
model can create decision regions that are more complex than 
the conic model by combining two or more decision regions 
of hyper spheres. In addition, the hyper-sphere model is 
thought to obtain a high discrimination accuracy even if there 
are fewer points included in the moving average. A motion 
signal corresponding to motion i is expressed as 
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where cij = (ci1, …,cin, …, ciN) is the center vector of the hyper 
sphere, rij is the radius of the hyper sphere, s= (s1, …,sn , …, 
sN) is the center vector of the first hyper sphere, and J is the 
number of hyper spheres. 

 
Fig. 5 Decision Regions 

III. EXPERIMENT 

A. Experimental Equipment 
Figure 6 shows the experimental system. EMG amplifiers 

(EMG-025, Harada Hyper Precision Inc.) amplified 500 
times (54 dB) were used to measure EMG signals. Disposable 
electrodes that were built into the preamplifier were 
employed. EMG signals were measured in four channels from 
the surface electrodes, and electrodes were arranged around 
the forearm. The PC (Pentium IV, 2.8 GHz, 1GB) served as 
the host computer. The 3D hand model control system was 
designed using MATLAB/Simulink (dSPACE). The 3D hand 
model was built by MotionDesk (dSPACE). DS1005 (Power 
PC 800 MHz, dSPACE) and DS2002, DS2103 and DS3002 
were used for the DSP, A/D, and D/A conversions.  

The EMG signals were full-wave rectified and smoothed 
with a 300 ms (conic model) or 150 ms (hyper-sphere model) 
moving average for feature extraction. The summing of the 
EMG signals had a threshold value. If the summed EMG 
signals fell below the threshold value, motions couldn’t be 
discriminated. 

 

 
 

Fig. 6 Experimental System 

B. Experimental Method 
The subjects of the experiment were five able-bodied 

adults (A, B, C, D, and E). Subjects A and B had previous 
experience with experiments. Subjects C, D, and E had no 
experience and were trained to use the experimental system 
for one to two hours. 

To obtain the learning parameters of the quadratic 
polynomials, we made the subjects perform each motion five 
times. To obtain the learning parameters of the conic models 
and hyper-sphere models, we made the subjects perform one 
motion each.  

To verify the discrimination accuracies, we made the 
subjects perform motions 30 times each and found that the 
proposed method doesn’t incorrectly discriminate hand 
motions as a result of elbow motions. Figure 7 shows the 
discrimination processing time decision method. Three times 
the standard deviation of the summed EMG signals in normal 
circumstances + the mean value is the start point of muscle 
activity, and the discrimination result of each motion is 
obtained at the end of the discrimination processing time [6]. 
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Fig. 7 EMG Onset 

IV. RESULTS AND DISCUSSION 

A. Number of hyper spheres 
The hyper-sphere model has multiple decision regions, so 

it creates a complex decision region. Figure 8 shows the 
relationship between discrimination accuracy and the 
number of hyper spheres, and Fig. 9 shows the relationship 
between discrimination processing time and the number of 
hyper spheres. The discrimination accuracy was 90% or 
more for every subject when there were six or more hyper 
spheres. Moreover, the discrimination processing time 
stayed constant for every subject when there were ten or 
more hyper spheres. We compared the hyper-sphere model 
with the conic model under the assumption of ten hyper 
spheres. 

 
Fig. 8 Discrimination Accuracy vs. Number of Hyper Spheres 

 

 
Fig. 9 Discrimination Processing Time vs. Number of Hyper Spheres 

B. Discrimination Accuracy and Discrimination             
Processing Time 

Discrimination accuracies of the conic model and 
hyper-sphere model were above 90 percent. Moreover, 
elbow motions did not interfere with the discrimination of 
the hand motion. Table 1 lists the discrimination processing 
times of the conic model, and Table 2 lists the 
discrimination processing times of the hyper-sphere model. 
The discrimination processing time was more than 300 ms 
for the conic model, but it was less than 300 ms for the 
hyper-sphere model, for every subject. 

 
 

Table 1. Discrimination Processing Time of Conic Model 

 
 

Table 2. Discrimination Processing Time of Hyper-Sphere Model 

 

V. CONCLUSION 
With the goal of discriminating motions of myoelectric 

limbs in real-time, we devised a real-time motion 
discrimination method for EMG signals that uses a 
hyper-sphere model. We reached the following conclusions 
after conducting a verification of the method. 
1) The conic model and hyper-sphere model can 

discriminate open, grip, chuck, wrist extension, and wrist 
flexion motions with an accuracy above 90 percent and 
they help to eliminate incorrect discriminations that may 
be caused by elbow motions. 

2) The discrimination processing time when using the 
hyper-sphere model was less than 300 ms. 

3) We created a system for controlling a 3D hand model. 
 

ACKNOWLEDGMENT 
This study was partially supported by Grant-in-Aid for 

Scientific Research (A)(23246041), Japan Society for the 
Promotion of Science. 

REFERENCES 
[1] M. Tsukamoto, T. Kondo and K. Ito, “A prosthetic hand control by 

nonstationary EMG at the beginning of motion,” TECHNICAL 
REPORT OF IEICE, MBE2005-117, pp. 41-44, 2006, (in Japanese.) 

[2] L. Ozyilmaz, T. Yildirim, and H. Seker, “EMG signal classification 
using conic section function neural networks,” Proc. of the 1999 
International Joint Conference on Neural Networks, Vol. 5, pp. 
3601-3603, 1999. 

[3] B. Karlık, M. O. Tokhi, and M. Alcı, “A fuzzy clustering neural 
network architecture for multifunction upper-limb prosthesis,” IEEE 
Transactions on Biomedical Engineering, Vol. 50, No. 11, pp. 
1255–1261, Nov. 2003. 

[4] J. U. Chu, I. Moon, and M. S. Mun, “A real-time EMG pattern 
recognition system based on linear-nonlinear feature projection for a 
multifunction myoelectric hand,” IEEE Transactions on Biomedical 
Engineering, Vol. 53, pp. 2232-2239, July 2006. 

[5] N.Kurisu，N.Tsujiuchi，and T.Koizumi，“Prosthetic Hand Control 
using Motion Discrimination from EMG Signals”，Proceedings of 
the 31st Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society(17820484.pdf)，（2009）. 

[6] Peter Konrad，“The ABC of EMG”，Noraxon Inc. USA.，pp. 60
． 

4438


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

