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A CPG Synergy Model for Evaluation of
Human Finger Tapping Movements

Keisuke Shima, Yasuhiro Tamura, Toshio Tsuji, Akihiko Kandori and Saburo Sakoda

Abstract— This paper proposes the CPG synergy model
— a biomimetic rhythm generator model based on central
pattern generators (CPGs) and muscle synergy theory to
enable evaluation of rhythmic motions with non-stationary
characteristics such as human finger tapping movements. The
model consists of multiple CPGs to approximate the complex
rhythmic movement of humans, and has the potential to allow
evaluation of abnormal movements in patients with motor
function impairments such as Parkinson’s disease (PD).

To verify the validity of the proposed model, comparison
experiments were conducted using model parameters (i.e., syn-
ergies, weight coefficients and time-shift parameters) extracted
from finger tapping movements performed by individuals in
a healthy subject group and a PD patient group. The results
showed that the number of synergies, the second moment of
synergy shapes and the coefficient of variation of maximum
weight coefficients show significant differences for each subject
group, and indicated that the model could be used to evaluate
irregular rhythmic movements as well as regular ones.

[. INTRODUCTION

Parkinson’s disease (PD) occurs due to the loss of nerve
cells, which are responsible for producing dopamine in a
portion of the midbrain known as the substantia nigra, and
is a progressive nervous disease that causes motor function
impairment resulting in symptoms such as rigidity, gait
disorders and tremors.

Quantitative evaluation of voluntary/involuntary move-
ments in PD patients has already been extensively researched
through approaches such as the investigation of tremors by
Salarian [1] and Gil et al. [2] and the examination of finger
tapping movements by Konczak et al. [3], Shima et al.
[4] and Yokoe et al. [5]. These studies sought to quantify
the symptoms of PD patients by extracting the features of
movements measured using various sensors, and investigated
the motor function of patients and healthy subjects from the
features of such movements. However, as voluntary human
movements are generated by complex information processing
in the central nervous system (CNS), the peripheral nervous
system (PNS) and the musculoskeletal system (MSS), it is
necessary to discuss the measured movement features and
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to develop a model-based evaluation tool in consideration of
such information processing mechanisms.

The modeling of voluntary movements has two ap-
proaches: models for single-shot (discrete) movements such
as reaching motions (referred to here as single movements)
and those for periodic (continuous) movements such as walk-
ing (referred to here as rhythmic movements). For example,
Flash et al. [6] proposed the minimum jerk model, and
demonstrated the generation of a smooth hand trajectory with
a bell-shaped velocity profile. Bizzi et al. [7] also proposed
a method that can be employed to extract muscle synergies
from time-series electromyograms (EMGs). However, it is
not possible to generate and evaluate consecutive motions
with these models due to their focus on single movements.

Rhythmic movements are generated by a CNS element
called the central pattern generator (CPG) defined as a set
of neural circuits that generate periodic motor commands
for rthythmic movements such as locomotion. Calancie [9]
and Dimitrijevic et al. [10] described the performance of
rhythmic movements when electric stimulation was applied
to spinal cord injury victims at constant intervals. Against
this background, rhythmic movements such as walking have
been modeled based on a CPG [11], [12]. It should be noted
that CPG models cannot express non-stationary features of
movements such as rapid changes in rhythm, amplitude and
velocity even if the relevant structure can be determined
appropriately.

The purpose of this study is to realize model-based evalu-
ation of rhythmic movements with non-stationary character-
istics in humans. To this end, we propose the CPG synergy
model — a novel rhythm generator based on CPGs and muscle
synergy theory. It consists of multiple CPGs to approximate
complex rhythmic signals that change amplitude and velocity
in each cycle. Modeling of rhythmic movements using the
proposed model has the potential to allow evaluation of
abnormal movements in PD patients.

II. MODELING OF RHYTHMIC MOVEMENTS BASED ON A
CPG SYNERGY

A. A CPG synergy model

Rhythmic movements are known to be realized by peri-
odic motor commands generated from CPGs in the spinal
cord to the muscles, resulting in muscle activation. This
paper considers finger tapping movements as an example of
rhythmic movements (Fig. 1). Finger tapping movements,
which have been widely applied in clinical environments to
evaluate motor function, are periodic movements involving
the opening and closing of the thumb and index finger.
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Fig. 1. Examples of finger tapping movements

Figure 1 plots the fingertip distances measured using a motor
function evaluation system [4] for finger tapping movements
proposed by Shima et al. The fingertip movement patterns of
the healthy subject remain constant for each tap, while those
of the PD patient show changes in features such as rhythm
and amplitude for each tap, as pointed out in previous studies
[1]-[4]. This example may suggest that the PD patient could
not produce constant rhythmic patterns due to CPG disorders.
Accordingly, to allow discussion of the relationships between
the ability to generate motion and motor function impairment
based on CPGs, a new model is required that enables the
following:

o Expression of periodic movements

o Evaluation of rhythm patterns with rapid changes in
features such as amplitude and velocity in each cycle

o Reconstruction of normal/abnormal rhythmic move-
ments through dynamic adaptation of the parameters in
the same model

Previous CPG models (such as those described in [13]
and [14]) can predict periodic movements with stationary
characteristics, but cannot produce rapid changes in rhythm.
It is also difficult to reconstruct various movements using
a single CPG model due to the complexity of setting the
parameters involved.

This paper proposes a CPG synergy model that can be used
for purposes such as generating complex rhythms combining
multiple CPGs, which produce the building blocks of rhythm
patterns by decomposing complex rhythmic signals into basic
rhythm patterns. Figure 2 shows the proposed model, in
which each CPG generates basic rhythm patterns that are
then combined to produce various rhythmic movements using
weight coefficients and time-shift parameters. By adapting
these coefficients and parameters, the influences of each
CPG on movements can be controlled, and rapid changes
in amplitude and velocity for each cycle can be described.
The signal measured from rhythmic movements is expressed

CPG 1 Weight

i coefficients
%S\(f)f\/\f\f\ W, Time-shift

U i S
CPG2 ! Parameters
%5 (1)) /\/W \Jomt unit

d ()= Z,,,
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Fig. 2. Overview of the proposed CPG synergy model

as d(t), which is defined as follows:

a(t) = d;(ty,)
j
(D Ky +k; — 1At
te = (kj— DA (1)

Here, t = 0, At,2A¢,. .., (Z}le K; —1)At, and d;(ty;) is
the value of d(t) at t;, in jth cycle. At is the sampling time,
j=1,2,...,J, and k; = 0,At,2At,..., (K; — 1)AL. J is
the number of cycles, K; represents the number of samples
in the jth period. The rhythmic patterns (synergies) generated
by the ith CPG are defined as s;, and rhythm signals in the
Jjth cycle d;(ty,;) are expressed as

§ Wi,j8i

Sz((u — 1)At) = { f)’; Egtief"z\iq;e?At < Tmax)

where I describes the number of synergies, and U is the
number of samples in each synergy. S! > 0 indicates the
value of the uth sample in the ith synergy, T)nar = UAL
is the synergy duration time, and w;; and t;; are the
amplitude and time-shift parameters for the ith synergy
(in the jth cycle), respectively. In calculating the synergies

= [SL,...,85, 82 ..., 8% ..., SE ... SL]T generated
by each CPG, the weight coefficients w = [w; ;] € RI*/
and time-shift parameters ¢ = [t; ;] € R'*/ enable the
expression of various rhythmic movements. It is therefore
possible to investigate differences in the ability to generate
motion between patients and healthy subjects based on the
calculated parameters.

—tij) 2

, 3

B. Identification of the CPG synergy parameters

The model parameters, which are synergies S¢, weight
coefficients w; ; and time-shift parameters ¢; ;, must be
identified from the rhythmic signal d;(tx;). For parameter
estimation, this study used the muscle synergy extraction
algorithm proposed by Bizzi ef al. [7], who described its
ability to extract building blocks to simplify the construction
of motor behavior (muscle synergy) from EMGs of frog’s
legs during kicking and jumping motion. It should also be
noted that the measured EMGs could be reconstructed using
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a combination of the muscle synergies, weight coefficients

and time-shift parameters extracted [8]. The identification

procedure for the CPG synergy model is as follows:

i. To divide the signal of each cycle from d(t), instants
tr;(=1,2,...,J) when d(t) < ds, d(t) < 0 and d(t+
At) > 0 are selected. Here, .J is the number of #,. d(t)
is then normalized to make the maximum value equal
to 1 and the minimum value equal to 0. The normalized
rhythmic signal D is expressed using ¢, as

D= [dAl(tl)a e dAl(tKl)vdAQ(tl)a e adQ(th)a
cody(t), . di(tk )T @

where d(t) is the temporal differentiation of d(t).
ii. The synergy and weight coefficient elements, S? and
wk;,, are initialized using the following equations:

Si = Asin(2mult) + (1 — Nu(udt)  (5)
wi,j = V(Zvj) (6)

where A (0 < A < 1) is a constant set in advance,
and p(uAt) and v(i, j) are random values in the [0, 1]
interval.

iii. Letting d;(ty,) = dj(tr,) and 7 = 1, the time-shift
parameter ¢ is found as outlined below.

The maximum time delay is computed using the
cross-correlation between d; (tr,) and s, (tx,)), and
is defined as the time-shift parameter ¢, ; of the
rth synergy. The model subtracts the synergy after
weighting and time-shifting from the rhythmic signal
dj(try) as dj(ty,) = dj(tr;) — wrjsr(te; = trj).

If r < 1,itis set as 7 = r + 1, and the process is

repeated from iii-i. Meanwhile, if » = I, the process

goes on to iv.

iv. The synergy and weight coefficients are updated using
the multiplicative update rule [15] to minimize the
evaluation function (i.e., root mean square errors, or
RMS errors), expressed as

J Kj I 2
1 ~
7 Z Z <dj (tkj)wai,jsi(th ti,j)> . (7)
ZK'j:1kj:1 i=1
J
j=1

iii-i.

E?=

iv-i. The weight coefficients are updated using the fol-
lowing equation:

t D;SO;t;
s = i race(T] > [ti]) . 8)
trace(HTS" SO,[t; ;])

Here, ®; is a matrix of the time-shift parameters,
and is expressed as:

©;i[7]],, =dlp— (i —1)ja—4] (9

I
Hj =) wi;0ilti;]
A

H=[H, H,,...

(10)

, Hy] (1)

where 0 is the Kroneker delta.
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Fig. 3. Example of measured rhythmic signal

iv-ii. The synergies are updated using the following equa-

tion:
. DHT
S:S( H )

SHHT (12)
Here, the model calculates the determination coeffi-
cients R? and R2 between D and SH, and between
D and SH, respectively.

v. Letting S = S, the procedure is repeated from iv until
(R? — R?) < R , where R? is the threshold for
termination of the algorithm.

Using extracted synergies S’,, weight coefficients w; ; and

time-shift parameters ¢; ;, various rhythmic movements can

be expressed.

III. EVALUATION OF FINGER TAPPING MOVEMENTS
BASED ON A CPG SYNERGY MODEL

The proposed model enables the extraction of synergies,
weight coefficients and time-shift parameters for rhythmic
movements, meaning that normality/abnormality in such
movements can be evaluated based on the model parameters
outlined above. This section discusses the ability to gener-
ate motion with healthy subjects and PD patients through
evaluation of finger movements.

A. Preliminary experiments

To evaluate the ability to generate motion using the
proposed model, an appropriate number of synergies must be
decided to approximate the relevant movements. To this end,
the relationships of estimated accuracy between the number
of synergies and estimated movements were verified.

1) Methods: Synergy extraction experiments were con-
ducted for finger tapping movement data recorded from
two healthy female subjects (A: 24 years old; B: 26 years
old). The subjects were asked to move their fingers in time
with a metronome at a frequency of 3 [Hz] for 15 [s],
and a magnetic sensor (UB-1; Hitachi Computer Peripherals
Co., Ltd.) [16] was used to measure the finger movements.
The sensor can output voltages corresponding to changes
in the distance between the two coil-bearing fingertips, and
these voltages are converted to fingertip distances based
on non-linear calibration as proposed by Shima et al. [4].
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The sampling frequency was 100 [Hz], and one trial was
conducted. The measured distances in a single finger tap
(i.e., one opening and closing of the fingers) represent one
cycle as rhythmic signals. Each tap was extracted from the
velocities d(t) calculated from the fingertip distances d(t)
using differentiation filters. The parameters were set as [ = 1
to 7, Tinae = 0.3 (i.e., U = 30), A = 0.8 and convergence
condition R?, = 0.001.

2) Results and discussion: Figure 4 shows an example of
the experimental results (Subject A; I = 4) as follows: (a)
measured fingertip distances and estimated signals from the
proposal model; (b) extracted synergies; and (c) weight coef-
ficients and time-shift parameters. The vertical and horizontal
axes in Fig. 4 (a) show the amplitude of the fingertip distance
and the given time ¢, the axes in (b) describe the values of
four extracted synergies and the time, and the axes in (c)
give the weight coefficients and time-shift parameters and the
number of taps, respectively. In these results, the evaluation
function £? and the determination coefficient between the
measured and predicted distances are 0.047 £ 0.006 and
0.95540.012, respectively. The figure confirms that fingertip
distances can be reconstructed using extracted synergies,
weight coefficients and time-shift parameters, as the changes
in the estimation waves are similar to those of the actual
fingertip distances. In addition, all extracted synergies are
bell-shaped, and the synergy with the maximum weight
coefficient changes with each tap. These results indicate
that the contribution rates of synergies change to express
rhythmic movements with various amplitudes in each tap.
Here, the weight coefficients and time-shift parameters in
which the synergy contributed the most to the expression of
each tap are defined as the maximum weight coefficients and
maximum time-shift parameters.

Conversely, the extracted results of time-shift parameters
(in Fig. 4(c)) show several large values of more than 0.3
[s] for the fourth synergy, indicating that this synergy is
unnecessary for the estimation of movement. J, is the
number of times when ¢; ; exceeds 0.33a, and JT’” (where
J is the total number of taps, and « is a constant) is shown
in Fig. 5. The vertical and horizontal axes show the number
of synergies I, RMS errors and ‘]7 in @ = 0.9. From the
figure, it can be seen that ‘]7 became large in line with the
increased number of synergies, while the evaluation functions
did not change greatly. This result suggests that unnecessary
synergies may be extracted if the number of synergies is too
large for the expression of movements.

In this study, therefore, in order to determine the appro-
priate number of synergies, the number N was increased
in increments of one, and the maximum number of N that
satisfied JT < [ was set as the appropriate number of
synergies. Using this procedure, the number of synergies
was set as I = 3 for Subject A and I = 4 for Subject
B in the case of 3 = 0.1. The evaluation function E?
and the determination coefficient between the measured and
predicted distances were 0.040 = 0.008 and 0.957 + 0.017,
respectively. The results confirm that this procedure can
be used to decide an appropriate number of synergies to

— Measured distance - - - Predicted distance

Distance d ()

Time ¢ [s] 5
(a) Fingertip distance
—+— Weight coefficients
—o— Time-shift parameters

1.0 1.0 0.4 1.0, 0.4
0 ﬂ /\ 0 &MMOO“ 0
Al

0
. .0 f’; j W 0.4
0 0 safooFie el 0 0
0 03 0 03 0 15 0 15
Time 7 [s] Tap count ; [times]

s)(1)
=
s4(1)
b, j ;‘
S /tl
Wi,

(c) Weight coefficients and

(b) Extracted synergies time-shift parameters
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parameters in Subject A
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Fig. 5. Relationships between the number of synergies and estimation
accuracies (RMS error and redundancy)

generate rhythmic movements for each subject.

B. Evaluation of finger tapping movements for healthy sub-
Jjects and PD patients

1) Methods: Finger tapping data measured from healthy
subjects and PD patients were verified using the proposed
model as an example of evaluation of the ability to generate
motion. The subjects were 30 healthy individuals (average
age: 39.73 £+ 10.88 years old, A - AD) and 3 PD patients
(average age: 704 1.73 years, AE - AD), and were asked to
move their fingers in time with a metronome at a frequency
of 3 [Hz] for 15 [s]. The parameters used in the proposed
model were set as T},4. = 0.3, A = 0.8, th =0.001, a =
0.9 and 8 = 0.1. To compare the ability to generate motion
between healthy subjects and PD patients, four indices were
computed: the number of synergies, the second moment of
synergy shapes around the maximum value, the coefficient
variation (CV) of the maximum weight coefficients, and the
CV of the maximum time-shift parameters.

2) Results: Examples of the results for healthy subjects
and PD patients are shown in Figs. 6 and 7, respectively,
which plot each value as follows: (a) finger tapping distance
d(t); (b) extracted synergies s;(t); (c) weight coefficients
w; ; and time-shift parameters ¢; ;; and (d), (¢) maximum
weight coefficients w,,,, and time-shift parameters ¢4,
normalized by each mean value, respectively. The numbers of
synergies found using the proposed procedure (as described
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Fig. 6. An example of measured distance, synergies, weight coefficients
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in Section 4.1.2) were 3 (Subject C - a healthy subject) and 8
(Subject AE - a PD patient). The approximation errors £ for
each movement (i.e., the evaluation function of Eq. (9)) were
0.044 (Subject C) and 0.031 (Subject AE). The number of
synergies, the second moment of synergy shapes around the
maximum value, the coefficient variation of the maximum
weight coefficients and the time-shift parameters are shown
in Fig. 8, which plots the average values for all subjects.
The average approximation errors for the healthy subject
group and the PD patient group were 0.044 £+ 0.004 and
0.037£0.005, respectively, and the determination coefficients
were 0.95 + 0.02 and 0.96 &£ 0.01, respectively. Since the
numbers of synergies extracted from the healthy subject
group and the PD patient group were 3.07 £+ 0.87 and
8.00 4 1.00, respectively, the number of synergies needed
to express the movements of PD patients was higher than
that for healthy subjects. The second moments of synergy
shapes around the maximum value for each subject group
were 0.044 £ 0.014 (healthy) and 0.016 4 0.006 (PD), and
the CVs of the maximum weight coefficients and time-shift
parameters were 0.270 4= 0.044 and 0.511 4+ 0.016 (healthy),
and 0.410+ 0.117 and 0.609 + 0.116 (PD).

3) Discussion: Figure 6 (a) shows that the rhythms and
amplitudes for the finger tapping distances of a healthy
subject (Subject C) remained constant, while the movements
of a PD patient (Subject AE) exhibited changes in features
such as rhythm, amplitude and velocity with each tap. This
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Fig. 7. An example of measured distance, synergies, weight coefficients
and time-shift parameters (Subject AE)

symptom is recognized as typical of PD patient movements
from previous studies [3]-[5] and in the UPDRS finger
tapping score.

The average number of appropriate synergies for the PD
patient group is larger than that for the healthy subject group.
The shapes of the synergies extracted from PD patients are
also relatively thin compared with those of healthy sub-
jects. The average of the second moments (which represents
the width of synergies) computed from PD patient group
movements is smaller than that for healthy subjects (see
Fig. 8 (b)). These results indicate that PD patients may have
abnormal synergies with shapes different to those of healthy
subjects, so many synergies may be needed to express their
movements. In Figs. 6 and 7, the weight coefficients for both
subjects become smaller when the number of synergies is
large, which means that the contribution rate of synergies
in finger tapping movements becomes small. Furthermore,
the normalized maximum weight coefficients and time-shift
parameters of the PD patient vary widely compared with
those of the healthy subject, and the CVs of the maximum
weight coefficients differ significantly (p < 0.01) for each
subject group (Fig. 8 (c)). This result may indicate that the
amplitudes of fingertip distance for PD patients gradually
decrease due to loss of the adjustment function for weight
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coefficients in regard to synergies. However, the CVs of the
maximum time-shift parameters in the PD patient group do
not differ significantly (Fig. 8 (d)). Since the task set was to
move the fingers in time with a metronome at 3 [Hz], these
variables did not differ between each subject group. This
result leads us to the conclusion that the proposed model
can evaluate the ability to generate motion, which may differ
between healthy subjects and PD patients.

IV. CONCLUSION

This paper proposes a novel CPG synergy model based on
CPGs and muscle synergy theory to express complex human
motions. The model can approximate irregular rhythmic
movement and evaluate the ability to generate motion based
on input parameters (i.e., synergies, weight coefficients and
time-shift parameters) extracted from movements.

The results obtained in the comparison experiments for
synergies, weight coefficients and time-shift parameters be-
tween the healthy subject group and the PD patient group
are summarized below.

o More synergies may be needed to express movements
in PD patients compared to those of healthy subjects
(healthy subject group: 3.07 4= 0.87; PD patient group:
8.00 = 1.00).

o The shapes of synergies in PD patients are relatively
thin compared with those of healthy subjects because
the average second moments of synergy shapes around
the maximum value are 0.044 + 0.014 (healthy) and
0.016 £ 0.006 (PD).

o The CVs of the maximum weight coefficients (i.e., the
weight coefficients of the synergies that contributed
most to the expression of movements) for PD patients
are significantly larger than those of healthy subjects
(healthy: 0.270 £ 0.044; PD: 0.511 £ 0.016).

These results indicate that the ability to generate finger

tapping motion may differ between healthy subjects and PD
patients.

In future research, we plan to investigate the approxima-
tion capability of the proposed model through comparison
with that of the non-stationary AR model. Furthermore, the
number of subjects will be increased to enable more detailed
discussion of the ability to generate motion.
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