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Abstract This study aims to determine the optimal 

temporal, angular and acceleration parameters and 

thresholds for an accelerometer based, chest-worn, fall 

detection algorithm. In total, 10 healthy male subjects 

performed 14 different fall types, 3 times by each. The falls 

were performed onto in a quasi-realistic environment 

consisting of mats of a minimum thickness. 

Optimum parameters for; tfalling: time-to-fall, θmax: max-

angle, tθmax : max-angle-time, tRTStanding : Return-to-standing-

time and tlying : lying-time were determined using a data set 

consisting of a total of 420 falls. 

I. INTRODUCTION 

HE percentage of people in the world over 65 years is 

set to increase by 98.5% by the year 2050, resulting in 

29% of people being considered elderly [1]. Injuries as a 

result of falls are a primary health risk for this population, 

both in a home environment, hospitals and residential 

care homes. 

With the improvement of IMEMS sensor technology, 

research into the monitoring of human movement and the 

automatic detection of fall, the number of systems to 

promote safer independent living amount the elderly, has 

increased dramatically in the last 20 years. 

The automatic detection of falls facilitates early 

medical intervention, reduces the consequences of the 

“long-lie” [2] thus promoting more independent living 

[3]. 

A number of fall detection systems do currently exist 

which employ temporal parameter detection, posture, 

body segment angle detection and impact detection to 

distinguish falls from normal activities.  

The system developed by Doughty et al. [4], which was 

later developed by Tunstall1 into a popular commercial 

system, employs a 2-stage detection process detecting 

impact at the waist followed by monitoring of the users 

posture. An alarm is raised within 20s if the subject 
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remains lying. 

An algorithm developed by Boissy et al. [5] also 

performs a 2-stage detection process. Detecting impact 

using fuzzy logic and a change in trunk angle in two, 1s 

windows, 1.5s before and after the peak acceleration. A 

total of 450 falls were distinguished from 300 non-falls 

with a sensitivity of 93% but with a high false-positive 

rate of 29%. 

Recently Kangas et al. [6],[7],[8] assessed a number of 

low-complexity fall detection algorithms, consisting of 

different combinations identified aspects of a fall, namely; 

beginning of the fall, velocity, peak impact, and post-fall 

posture. Results show detection of a fall-impact followed 

by, post-fall posture, produced high sensitivity (97–98%) 

and specificity (100%) for a head or waist-worn system. 

The start of the fall was detected if the root-sum-of-

squares (RSS) signal was lower than 0.6g and an impact 

peak was detected within 1s. A lying posture was detected 

if 2s post-impact, the average acceleration in a 0.4s 

window, was 0.5g or lower. 

Chao et al. [9] also used impact detection and post-fall 

posture (PP) for fall detection. PP was defined as a lying 

posture, if the trunk posture averaged more than 45
o
 

(0.707g) in a temporal window of 1.8s to 2.2s after a 

suspected fall. A total of 7 young male subjects performed 

56 falls and 119 ADL. A combination of acceleration 

cross-product and PP produced a sensitivity of 100% and 

>98% specificity for the chest or waist. 

Thus many studies on fall detection algorithms have 

monitored certain kinematic and temporal aspects of falls 

to enhance the fall detection accuracy by using postural 

detection following a fall or a postural change from before 

and after the fall-impact. To date however, little or no 

detail as to how the parameters employed in these 

algorithms, were derived. In this study we aim to examine 

a data-set of 420 simulated falls, which were performed 

under quasi-realistic falling and landing conditions onto a 

surface of minimum thickness, performed with realistic 

falling technique. We thus propose to analytically derive 

temporal angular and vertical acceleration parameters for 

a chest-worn accelerometer-based fall-detection 

algorithm. 

II. MATERIALS AND METHOD 

Longitudinal, anterior/posterior and medial-lateral tri-

axial accelerometer readings were recorded from the chest 

during simulated falls performed in a quasi-realistic 
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environment, using a custom designed wearable wireless 

tri-axial accelerometer-based sensor, Fig. 1. 

 
Fig. 1 - Tri-axial accelerometer based sensor (size 78x40x20 mm, weight 

30g). The sensor consists of; a single liPo battery capacity 610mAh, a 

LIS3LV02 tri-axial accelerometer from ST Microelectronics Inc. and dsPIC 
(Microchip Technology Inc.) microcontroller. The Accelerometer data was 

downloaded via the Bluetooth link using a custom designed PC-based data 

logging software written in LabVIEW2. Calibration of the tri-axial 

accelerometer signals was performed using the method outlined by Ferraris 

et al. [10]. Signals were recorded at a frequency of 120Hz.  

 

The sensors were concealed in rigid plastic cases and 

securely located at the anterior aspect of the trunk, at the 

sternum, using a chest-strap made from elastic material 

and Velcro. Data processing and analysis was performed 

using MATLAB
3
. The University of Limerick Research 

Ethics Committee (ULREC) approved the trial protocol 

and written informed consent was given by each subject 

before the trial. 

A. The quasi-realistic simulated falls 

In total 10 young healthy male volunteers performed 

simulated falls onto minimum thickness mats while being 

monitored using the accelerometer based sensor, Fig 1. 

Each subject performed 14 functional movements which 

involved a fall, 3 times each (420 falls). The subjects 

ranged in age from 19-28 years (24.3±3.16 years), body 

mass from 57 to 96 kg (78.9±11.34 kg), and height from 

1.7 to 1.85m (1.77±0.05 m). Volunteers fell onto mats 

that were selected to be of minimum thickness (80mm, 

unless stated, an additional mat of 150mm thickness was 

placed over the 80mm mat in cases where the fall 

involved a highly concentrated impact which may cause 

injury) so as to simulate falling on a stiff surface, but 

without sustaining an injury. Subjects were instructed to 

fall as naturally as possible at a self selected speed. 

Following the fall, subjects were requested to return to a 

standing position, at a normal comfortable speed but not 

to spring-up unnaturally.  

The falls performed include the following: 

1) Faint fall forward with knee flexion.  

2) Step down off a platform and fall forward, thick 

(150mm) soft mat on floor. 

3) Walking and self-trip, thick (150mm) soft mat on 

floor. 

4) Faint fall backwards with a round back and knee 

flexion 

5) Backward sitting-on-empty on the floor, no use arms 

or taking a step back, thick (150mm) soft mat on 

floor. 

6) Backward fall at the base of wall, thick (150mm) soft 

mat on wall. 

 
2 National Instruments Corporation, 11500 N MoPac Expwy, Austin, 

TX, USA. 
3
 The MathWorks Inc., 3 Apple Hill Drive, Natick, MA, USA. 

7) Faint fall left with knee flexion 

8) Fall backwards and turn to the left side 

9) Side fall to the left landing at the base of a padded 

wall, thick (150mm) soft mat on wall 

10) Faint fall left with knee flexion 

11) Fall backwards and turn to the right side 

12) Side fall to the right landing at the base of a padded 

wall, thick (150mm) soft mat on wall 

13) Falling off a chair, sit on the edge and slipping off. 

14) Unrestricted ADL with an unscripted fall at the end, 

walking-lying-walking-sitting-walking-fall-standing. 

B. Posture measurement 

Trunk posture-angle is determined through taking the 

dot-product of the reference acceleration vector, g
r
, and 

the current acceleration vector at time t, )(ta
r

, Fig. 2. This 

signal was then low-pass filtered at 5Hz using a 2
nd

 order 

Butterworth digital filter, Fig. 7. The reference 

acceleration vector is the average of the three 

accelerometer signals recorded when the sensor is 

attached, with the subject standing still for 5 seconds at 

the start of each recording session. This provides the 

location of the gravity vector within the sensor coordinate 

frame. The angle that the body tilts away from the vector 

is used as the posture angle of the chest (1), Fig. 2.  

 
Fig. 2 - Graphical operation of the dot-product angle during (A) Standing 

where the vector g is obtained and (B) sitting. 
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A standing posture was detected if the posture was 

between 0
o
 and 20

o
 (THstanding) [11],[12]. In the studies by 

Culhane and Lyons, a lying posture is determined when 

the posture angle exceeds either 60
o
 (THlying-60

o
) or 45

o
 

[11],[12]. With the threshold angle of 60
o
 suggested as 

the optimum for activity classification. Both thresholds 

are tested here with the recorded data set of falls and 

normal activities. 

C. Vertical acceleration profile 

A vertical acceleration profile estimate (av) is obtained 

by taking the dot-product between the tri-axial 

accelerometer signal and a low-pass filtered delayed 
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version of the TA signal, using a 2
nd

 order IIR 

Butterworth filter with a cut-off of 2.05Hz. The filter 

delay introduced by low-pass filtering was removed it is 

dependent on the cut-off frequency (fc) and filter order 

(Oc) [13]. The maximum vertical acceleration (av,MAX) is 

recorded. 

D. Temporal and kinematic parameters of falls 

The following parameters were examined: 

tfalling – time-to-fall, this is the time between when the 

standing threshold is exceeded and the maximum upper 

peak value (UPV), indicating the impact, is detected. 

θmax – max-angle, this is the maximum recorded angle 

in a 3 second window centered at the recorded 

acceleration UPV. 

tθmax – max-angle-time, this is the time when the 

maximum angle occurs in relation to the maximum 

acceleration UPV. 

tRTStanding – Return-to-standing-time, this is the time 

taken for the subjects to return to a standing position. 

tlying – lying-time, total time when the lying threshold, 

THlying, is exceeded in the immediate time around a fall. 

av,MAX - the maximum recorded vertical acceleration 

peak, which can be used for impact detection. 

III. RESULTS 

The previously detailed temporal and kinematic 

parameters were examined and the results are displayed 

in Table I. From Fig. 4 and Table I we see that the 

maximum amount of time taken to fall (tfalling) from the 

recorded data set, is 2.58s, however 99.05% of tfalling were 

less than 1.6s. The longer times observed for this fall 

activity occur, as to initiate this fall type subjects first sat-

down and then performed an exaggerated lean to one side 

before finally falling off the chair.  

 

 

From Fig. 4 (B) we can see the maximum peak values 

for the trunk angle during a fall. The minimum recorded 

trunk angle, θmax, was 41.35
o
, Table I. Unsurprisingly the 

fall types that consistently produced the lowest trunk 

angles were falls where the subject landed at the base of a 

wall. 

From Fig. 4 (A) we see that the time, tθmax, when the 

maximum trunk angle occurs, θmax, is between -0.59 

seconds to +1.49 seconds after the peak UPV. With the 

99.3% of maximum trunk angles occurring within a 1.06s 

window from -0.463s to +0.604s.  

 
Fig. 4 – (A) This plot displays the time when the maximum angle occurs in 
a 3 second window centred at the maximum UPVs for each recorded fall. A 

negative time indicates that the maximum angle occurred before the 

maximum UPV. (B) This plot displays the maximum angle measured in a 3 

second window centered on the Maximum UPV for each recorded fall. 

In Fig. 5.the times for a subject to return back to 

standing again after a fall are displayed. The minimum 

time recorded here, represents the quickest time that a 

person returned back to standing after a fall at a self-

selected speed. A minimum time for, tRTStanding, 3.02s was 

recorded.  

 
Fig. 5 – This plot displays the time when volunteers finally returned to a 

standing position. It represents the time between the maximum UPV and 

when the trunk angle is less than the standing threshold angle, tRTStanding.  

Through examining the amount of time where the 

subject could be considered lying in a window of between 

0.6s before and 3.02 seconds after the impact, for a THlying 

= 45
o
 threshold, for the tlying parameter, 91.19% of times 

were above a 0.72s threshold and for THlying = 60
o
, 82.6% 

of times were above a 0.81s. The time thresholds tlying; 

0.72s and 0.81s represent the lower quartile point of all 

the 420 recorded falls. 

From Fig. 6 we can see the minimum recorded upper 

peak vertical was 10.66m/s
2
. 

Fig. 3 – This plot represents the time between when the standing threshold is 

exceeded to when the maximum UPV is reached, tfalling. 
 

TABLE I 

max min 

tfalling 2.581s* 0.001s 

θimpact  164.8o 41.35o 

tθmax 1.489s -0.588s 

tRTStanding  10.33s 3.02s 

tlying  2.797s 0s 

av,MAX 66.7m/s2 10.66m/s2 
* 99.05% of tfalling were less than 1.6s 
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IV. DISCUSSION 

This study aimed to determine a number of optimum 

temporal and angular parameter thresholds associated 

with falls performed in a quasi-realistic setting and fall 

strategy.  

From the 420 falls recorded we have determined that: 

1) The maximum time taken for a person to go from an 

upright posture to impact from a fall is 2.58s, 

however 99.05% of tfalling were less than 1.6s. 

2) The minimum recorded trunk angle, θmax, that 

occurred during a fall was 41.35
o
 

3) This peak trunk angle, θmax, occurs within a time 

window, tθmax from -0.59s to 1.49s at the occurrence 

of the maximum recorded acceleration UPV of the 

fall.  

4) The quickest time a subject returned back to standing 

after a fall, at a self-selected speed, tRTStanding, was 

3.02s. 

5) Selecting a lying threshold of THlying at 45
o
 as 

opposed to 60
o
 produced a greater posture detection 

proportion, when the threshold was set at the lower 

quartile point of all recorded lying times, tlying. 

6) Selecting a vertical acceleration threshold, av,MAX, at 

10m/s
2
 would ensure 100% detection of fall impacts. 

 
Fig. 7 – Sample trunk posture and RSS signals from 3 different falls. 

From visual feedback of the posture signal, it was 

interesting to observe that subject first orientated their 

trunk in a kneeling position with their trunk in an up-

right posture soon after landing from a fall. Then to 

return to a standing position, their trunk returned to a 

near horizontal state in order to perform a knee extension 

and to balance with their hands on the ground, before 

finally returning to an upright standing position. Thus the 

trunk angle signal was bimodal in nature following a fall, 

Fig. 7. 

The minimum recorded time, tRTStanding, of 3.02 seconds 

was the fastest time a young health male subject returns to 

standing after a fall. It can thus be anticipated that this 

time may be less than would be recorded from an elderly 

person following a fall. However it is unknown how 

psychological reactions along with physiological reactions 

of the body, such as a release of adrenalin caused by the 

shock, may affect the actual return-to-standing time.  

Future work will involve testing of these parameters in 

a fall-detection algorithm, over extended period of 

recorded unscripted as well as scripted ADL. 

V. CONCLUSION 

In conclusion we have examined 420 falls, performed 

in quasi-realistic conditions and falls performed with a 

realistic technique. We have determined optimum 

temporal and angular parameters that will allow for more 

robust detection of falls using an accelerometer based 

chest worn system. 
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Fig. 6 – Displayed is the maximum recorded vertical accelerations 
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