
  

  

Abstract—Multi-joint/multi-degree of freedom (DOF) human 
arm impedance estimation is important in many disciplines. 
However, as the number of joints/DOFs increases, it may become 
intractable to identify the system reliably. A robust, unbiased 
and tractable estimation method based on a systematic dynamics 
decomposition, which decomposes a multi-input multi-output 
(MIMO) system into multiple single-input multi-output (SIMO) 
subsystems, is developed. Accuracy and robustness of the new 
method were validated through a human arm and a 2-DOF 
exoskeleton robot simulation with various magnitudes of sensor 
resolution and nonlinear friction. The approach can be similarly 
applied to identify more sophisticated systems with more 
joints/DOFs involved.  

I. INTRODUCTION 

HIS paper proposes a robust, unbiased, and yet tractable 
linear stochastic estimation of human arm multi-joint/ 

multi-DOF impedance transfer function matrix (TFM) based 
on a systematic dynamics decomposition method (Fig. 1).  

Extensive research has been carried out with the aim of 
identifying multi-joints/DOFs impedance TFM [1-7]. Most of 
the studies utilized linear stochastic estimation method with 
force perturbations [1-3, 5-7] owing to a number of 
advantages of stochastic estimation compared with previous 
methods [8-11]. These advantages include that a model 
structure is not assumed, although the system is assumed to 
behave linearly for small perturbations; that the unpredictable 
stochastic perturbations minimize the likelihood of voluntary 
reactions; and that the perturbations obviate the need for 
separate measurements in different directions and provide a 
frequency-rich input to the subject in a relatively short time [1, 
2, 5, 7].  

Although these researches succeeded in estimating 
multi-joints/DOFs impedance TFM, practically, it may 
become inapplicable with the increase of number of joints/ 
DOFs to be identified. Even in the case of 2 or 3 DOF, human 
arm dynamics becomes intractably complex [4, 11]. 
Moreover, to estimate an n DOF impedance TFM, it will be 
shown in section II that, even with the most recent 
multiple-input multiple-output (MIMO) estimation method 
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[7], 2n2 transfer functions (TF) are needed to be computed 
simultaneously without numerical errors. Furthermore, in 
order to use a MIMO estimation method [1, 2, 5, 7], 
coupling(s) between elements of perturbation force vector 
(input coupling) should be minimized to reduce the estimation 
error [1, 5, 7, 12].  

Besides, under force perturbations, it is important to use a 
closed-loop dynamics (human arm and robot) identification [2, 
5-7, 13] for the unbiased estimation [12-14]; and to 
compensate for nonlinear friction in robot joints [15-17], 
which degrades estimation accuracy and reliability [2, 5-7].  

Therefore, it is our goal to propose a robust, unbiased, and 
most importantly tractable human arm impedance TFM 
estimation method. Specifically, we propose an estimation 
method that enables us to estimate an unbiased and accurate 
human arm multi-joints/DOFs impedance TFM regardless of 
nonlinear friction in robot joints and sensor resolution while 
keeping the complexity of the method low enough to put into 
practice even with the increase of number of joints/DOFs.  

The key idea is to systematically decompose the complex 
dynamics into  manageable multiple single-input multiple- 
output (SIMO) subsystems – essentially a set of single-input 
single-output (SISO) systems – using internal model based 
impedance control (IMBIC) [5, 6, 18] and to apply then a 
SIMO identification, which can be easily found in literatures 
[12], on each decomposed subsystem. 

Accuracy and robustness against nonlinear friction and 
sensor noise of the proposed identification method were 
verified through simulations with a 2 DOF human arm model 
[10] and a 2 DOF exoskeleton robot model together with the 
widely used LuGre friction model [5, 16, 17] (Fig. 1).  

This paper is structured as follows. In section II, we 
propose the dynamics decomposition method. Section III 
provides combined use of stochastic estimation and IMBIC 
for unbiased and robust human arm impedance TFM 
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Fig. 1. Schematic diagram of simulation conditions. The human 
shoulder and elbow joints are assumed to be perfectly aligned and 
firmly connected with those of the exoskeleton with torque 
transducers.
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estimation. Section IV presents accuracy and robustness of 
proposed estimation method through simulations. Finally, in 
section V, we summarize the results and draw conclusions.  

II. SYSTEMATIC DYNAMICS DECOMPOSITION WITH IMBIC 

A. Human Arm Dynamics 

To investigate the robustness of the proposed estimation 
method against nonlinear friction and sensor noise only, a 
linear human arm model, which was verified in previous 
studies [1-3, 5, 9, 10], was considered. 
h=Zh(s) ( θh – θ0), where (1) 
Zh(s) = Mhs

2 + Bhs +Kh, and (2) 
h=[h1 h2 … hn]

TRn denotes the torque vector applied to the 

human arm joints; ZhRn
n the human arm joint impedance 

TFM; s the Laplace variable; h=[1 2 … n]
TRn the human 

arm joint angle vector; Mh, Bh, KhRn
n denote the human 

arm joint space inertia, damping, and stiffness matrices, 
respectively, defined at the constant equilibrium position 
vector 0Rn. Without loss of generality, 0 can be set to be a 

zero vector and (1) can then be written as follows 
h = Zh(s) θh. (3)  

B. Robot Under IMBIC 

The goal of IMBIC [6, 18] is, regardless of nonlinear 
friction in robot joints, to replace the nonlinear robot 
dynamics with the following linear desired dynamics: 

 rd r rd r rd r rd h      M θ B θ K θ θ τ τ  , (4) 

where Mrd, Brd, KrdRn
n denote the desired inertia, damping, 

and stiffness matrices of the desired linear model; θr, rθ , 

rθ R
n the robot joint angle and its first and second time 

derivatives, respectively; rdRn the constant desired test 

location vector and may be equal to θ0 in the case of 
unimpaired subjects within the ROM [2, 5]; ΔRn the vector 

of torque perturbations. In the Laplace domain, after simple 
manipulation of (4), we obtain 
Zrd(s) (θr – θrd) = –h+, (5) 
where ZrdRn

n denotes the desired impedance TFM of the 

robot and is defined as  
Zrd(s) = Mrds

2 + Brds + Krd. (6) 
Similar to (3), without loss of generality, using desired 
admittance TFM Yrd – the inverse of Zrd and whose i,j-th 
element is Yrij – (5) can be written as follows 
θr = Yrd(s)( –h + ). (7) 

By applying IMBIC to the nonlinear robot dynamics, the 
robot can closely follow the dynamic behavior of desired 
linear dynamics (5) (or (7)). Details of IMBIC including 
superior desired impedance realization accuracy, 
experimentally confirmed friction compensation performance, 
tuning procedure can be found in [6, 18]. 

Since h is measured torque, by replacing the measured 

torques of some joints in (4) with zero values, almost infinite 
impedance can be realized for those joints.  

C. Systematic Dynamics Decomposition 

Since no relative motion exists between the human arm and 
the robot (i.e., θr=θh), (3) and (7) represent the closed-loop 
dynamics (i.e., human arm and the apparent robot dynamics).  

To perturb kth DOF only, all elements of Yrd, except Yrkk, 
and all elements of , except k,  must be zero  
Yrij = 0,  if  i≠k or j≠k , and (8) 
 = [01(k-1)  k  01(n-k)]

T.  (9) 
Substitution of (8) into (7) and simple manipulation yield 
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With the substitution of apparent robot dynamics (7) into (3) 
with the values of Yrd in (8) and Δ in (9), and some simple 
manipulations, one can get 
hi = Tik k, where (11) 
Tik = Zhik Yrkk ( 1 + ZhkkYrkk )

-1. (12) 
Substituting (11) and (12) into (10) yields 
k = Rkkk, where  (13) 
Rkk = Yrkk ( 1 + ZhkkYrkk )

-1. (14) 
This procedure can be repeatedly applied for all joints/DOFs 
needed to be identified in this systematic manner.  

From (12) and (14), one can see that the whole n DOF 
closed-loop dynamics after the decomposition is described 
with a matrix TRnn whose i,k-th element is Tik, and a vector 

RRn whose kth element is Rkk, whereas original dynamics 

given in (3) and (7) needs two matrices ZhRn
n and 

YrdRn
n. Thus, after the decomposition, the same dynamics 

can be described with fewer elements. Further, after the 
decomposition, still all the elements of human arm impedance 
TFM Zh 

can be found in T. In other words, the decomposition 
preserves all the information of the human arm impedance.  

Since the complex n DOF closed-loop MIMO dynamics is 
systematically decomposed into n SIMO systems, essentially 
any SISO identification method can be applied.  

III. AN UNBIASED ROBUST HUMAN ARM IMPEDANCE 

ESTIMATION METHOD 

In this section, an unbiased robust estimation method, 
specifically designed for the decomposed system, is proposed. 

A. Estimation of Human Arm Impedance 

With close examination of Tik in (12) and Rkk in (14), one 
can find that 
Tik = Zhik Rkk. (15) 
Thus, if one can compute ˆ

kkR , estimate of Rkk, and 
îkT , 

estimate of Tik, one can then compute ˆ
hikZ , estimate of human 

arm impedance TF Zhik, as follows 
1ˆ ˆ ˆ

hik ik kkZ T R .  (16) 
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B. Computation Method 

In the case of the proposed method, because the input Δk is 

known exactly without any input noise, without any bias, ˆ
kkR  

– estimate of TF from Δk to θk – and îkT  – estimate of TF from 

Δk to i  – can be computed as follows [12] 

_

1
ˆ

ˆ
k kk k k

kkR G G    

 , and  (17) 

_

1
ˆ

ˆ
k i k k kikT G G     

 .  (18) 

Here _k̂ k  and _î k  denote measured kth joint angle and ith 

joint torque with uncorrelated noise, respectively, when kth 
joint is perturbed. Substituting (17) and (18) into (16) gives us 
human arm impedance ( ˆ

hikZ ). Note that, thanks to the 

decomposition, it is not necessary to check the input coupling.  
Similar to [7], a derived ordinary coherence function for 

each sub-system was derived as a reliability measure with the 
assumption that noise output spectrum for the proposed 
estimation is equal to that of the direct estimation .The higher 
the coherence, the more reliable the estimate. 

IV. SIMULATION STUDY 

A. Simulation Condition 

 For simulations, 2 DOF linear human arm model was used 
with the dynamic and kinematic variables in [10] (Table I). 

Dynamic parameters of MIT-MANUS were used for 
exoskeleton robot [5, 19, 20], and link lengths of exoskeleton 
are set to be the same as those of subject’s arm [10].  

To verify the robustness against nonlinear friction, LuGre 
friction model, which is widely used in robotics area, has been 
employed [5, 16, 17]. Four different levels, given in [5], were 
tested. Further, four different levels of resolution (Table II) 
have also been employed to evaluate the robustness against 
noise. In each case, the same parameters (both friction and 
resolution) were applied to the two joints. 

Random torque perturbations (Δ) were generated for each 
joint by filtering a uniformly distributed random signal with an 
8th order Butterworth low pass filter with a 15Hz cut-off 
frequency by following [5, 7]. Magnitude of perturbation may 
affect estimation performance [3, 12]. Thus, three levels 
(Table III) of perturbations were applied.  

Fourth order Runge-Kutta method with 0.01ms time step 
was used for a reliable simulation by following [21]. Sampling 
times for control and data acquisition were set to be 1 ms.  

Spectral analysis parameters are given in Table IV. Trials 
lasted for 50 s (50,000 data points), allowing a number of 
sequential epochs of data to be averaged to reduce random 
error while allowing an acceptable spectral resolution. 

B. Simulation Results 

Estimated human arm impedance TFMs are always 
accurate regardless of resolution and friction (Fig.2).  

From Fig. 4, one can see that regardless of friction level, 
resolution level, and perturbation magnitude, estimation 
results were always reliable because ordinary coherence 

functions of all four elements are always close to unity. 
Further, in Fig. 3, VAFs are always close to 100% and R2 is 
close to unity. In short, from Figs. 2-4, it can be concluded that 
the proposed estimation method combined with IMBIC is 
robust against nonlinear friction in robot joints and sensor 
resolution, which are some of the most practical sources of 
error. 

V. CONCLUSIONS 

A robust, unbiased, and tractable human arm impedance 
estimation method based on systematic dynamics 
decomposition is proposed. Through realistic simulations, it is 
validated that the proposed method enables us to estimate 
human arm impedance TFM reliably and accurately 
regardless of magnitude of nonlinear friction and sensor 
resolution. 

Fig. 2. Real and estimated human arm impedance TFMs with 3rd level 
torque perturbations under 4 different levels of friction and resolution. 
Regardless of nonlinear friction in robot joints and sensor resolutions, 
human arm TFM is accurately estimated with the proposed estimation 
method.

TABLE I 
PARAMETERS OF HUMAN ARM DYNAMICS ADOPTED FROM [10] (THEIR 

TABLE 3 LOCATION 1 SUBJECT A, RESPECTIVELY) 

Joint angle 
(deg) 

Mh (Kgm2) Bh (Nms/rad) Kh (Nm/rad) 

1 =62.708 0.187 0.084 0.651 0.239 7.967 3.187

2 =77.260 0.079 0.060 0.236 0.407 1.663 6.901
 

TABLE II 
FOUR DIFFERENT LEVELS OF SENSOR RESOLUTION 

Resolution Level Encoder (deg) Torque sensor (Nm)
0 (No resolution) 0 0 

1 1.758e-3 0.005 

2 3.516e-3 0.010 
3 7.031e-3 0.020 

 

TABLE III 
PEAK MAGNITUDE OF THREE LEVELS OF PERTURBATIONS 

Perturbation Level Δ1 (Nm) Δ2 (Nm) 
1 3 1.8 

2 6 3.6 
3 9 5.4 

Δ1 : shoulder perturbation; Δ2 elbow perturbation, respectively.  
 

TABLE IV 
SPECTRAL ANALYSIS PARAMETERS 

NFFT NWND NOVL fr (Hz) 

8192 8192 6144 0.122 

NFFT number of data points included in the FFT calculation; NWND 
the length of the hanning window function; NOVL the number of 
overlapping samples; fr minimum resolvable frequency. 
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                                   (a)                                                                              (b)                                                                              (c) 
Fig. 3. Accuracy measures, VAFs and R2, under 4 different friction levels and resolution levels; (a) with 1st level perturbations; (b) with 2nd level torque 
perturbations; (c) with 3rd level torque perturbations.  

  
                            (a)                                                                             (b)                                                                              (c) 
Fig. 4. Reliability measure, mean of ordinary coherence functions, that correspond to Fig.3. (a) with 1st level perturbations; (b) with 2nd level 
perturbations; (c) with 3rd level perturbations.  
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