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Abstract— We propose the use of ground surface segmenta-
tion to enhance the perception of obstacles in low to medium
resolution prosthetic visual representations. We apply a recently
proposed algorithm for segmenting traversable space in stereo
disparity data, and show how such a scheme may be utilised
to enhance the distinction between the ground surface and
obstructions (in particular, small trip hazards). Qualitative com-
parisons with intensity and straight depth-based representations
highlight advantages for the visualisation of obstacles, offering
potential gains for visual navigation with low resolution and
low dynamic range visual prostheses.

I. INTRODUCTION

Bionic Vision Australia seeks to develop a retinal implant
capable of supporting visual ambulatory navigation. The
envisaged resolution and dynamic range of current and near-
future visual prostheses suggests this will require more than
down-sampled images of scene luminance alone [1]. More
efficient representations of environmental structure making
maximal use of stimulation points are likely to be required.
To support this, salient features in the scene will need to
be extracted and incorporated into the stimulation strategy.
Current trends (based on weight/cost/bandwidth trade-offs)
suggest digital image data will be the primary source for
obtaining such information [2], [3].

The perceptual response elicited by a single electrode is
referred to as a phosphene, and is generally described as
resembling a bright ‘star-like’ spot of light [4]. Psychophys-
ical studies have verified that the size and luminance of
each phosphene can be modified by varying the current
and frequency of the associated electrical stimulus [5]. An
accepted methodology for studying the functional capacity of
prosthetic vision is via simulated phosphene vision (SPV, see
[5], [1] for a review). In this, digital images are phosphenised
to simulate the visual conditions of prosthetic vision for
sighted participants.

Obstacle avoidance is critical to ambulatory navigation.
While studies such as [6], [7], [8], [9], [10], [11] pro-
vide empirical support for basic obstacle avoidance with
SPV using scene luminance (referred to as intensity-based),
the experimental conditions generally provide high contrast
change across surface boundaries to support this. Recent
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work has reported the use of surface depth as an alter-
native scene representation [12], [13]. This is achieved by
computing stereo disparities between two space-separated
parallel cameras, and modulating phosphene size and inten-
sity in accordance with the measured proximity of surfaces
along the phosphene’s mapped viewing direction (i.e., bright
means close, darker means further away). Results demon-
strate the ability of sighted participants to navigate with
the depth-based representation, with no significant drop in
preferred walking speed when over-hanging obstacles were
included [12]. This is in contrast to intensity-based, where a
significant drop in walking speed was recorded [13].

While offering potential benefits for navigation with low
resolution visual prostheses, the depth-based representation
is currently limited by both noisy stereo disparity mea-
surements, and a lack of distinction between traversable
and non-traversable space. In particular, boundaries between
connected surfaces become difficult to perceive as image
points on either side of the boundary typically hold similar
depth values. Thus, small ground surface obstacles may eas-
ily go unnoticed. Similar limitations exist under luminance-
based representations, where the perception of such obstacles
relies heavily on a change of intensity occuring. The clear
distinction of such obstacles is essential to the safety of im-
plantees, motivating consideration of possible augmentations
to enhance the perception of non-traversable space.

In mobile robot navigation, ground-plane modelling is
commonly employed to determine the traversability of the
immediate space. Often this is achieved by examining range
data, and inferring a dominant planar model via random sam-
ple consensus (RANSAC), or Hough-based voting schemes
(e.g., [14], [15]). Obstacles are made apparent as regions that
‘disagree’ with the obtained model. However, these methods
do not explicitly preserve surface boundaries. Recently, we
proposed a surface detection and segmentation scheme based
on the examination of iso-disparity contours [16]. In this,
surface boundaries are inferred as discontinuities along iso-
disparity contours (and disparity gradients).

In this paper, we propose a novel scene representation for
obstacle avoidance with a low resolution visual prosthesis.
Using iso-disparity analysis for ground surface segmentation,
we infer all traversable space in the image, from which all
non-traversable surfaces are also obtained. From this data, we
augment depth-based phosphene scene renderings to provide
both a cleaner visualisation of the ground surface, and to en-
hance the distinction between traversable and non-traversable
space; in particular, small ground surface obstructions.

The paper is organised in follows. Section II reviews
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iso-disparity contours, and our method for segmenting the
ground surface. Section III describes our proposed augmenta-
tion of depth for navigation with prosthetic vision. Section IV
presents results and Section V our conclusions.

II. GROUND SURFACE SEGMENTATION

Ground plane segmentation is applied in two steps: 1. an
initial surface detection phase; and 2. a globally optimised
pixel labelling phase. Before outlining these two steps, we
provide a brief overview of iso-disparity contours. See [16]
for further details.

A. Iso-disparity contours

Iso-disparity contours are formed from the intersection
of 3D surfaces in the scene with conceptual fronto-parallel
planes upon which all points project with uniform disparity.
Thus, in discrete disparity space, each plane intersects the
reference optical axis at the depth associated with each
disparity value. In disparity space, intersections of physical
surfaces with each iso-disparity plane form a level set of
adjoining points in disparity space. We refer to these as iso-
disparity contours.

In [16], geometric properties of iso-disparity contours
across planar surfaces are exposed, and used to infer planar
surfaces in the scene. Specifically, iso-disparity contours may
be deemed to be co-planar if they are adjacent, near parallel,
and adhere to a linear disparity gradient. If any of these
conditions fail, then a surface boundary must exist. These
conditions hold similarly along disparity gradient vectors.
Thus, a key advantage of iso-disparity analysis is the ability
to detect and preserve all connected surface boundaries.

B. Step 1: Planar surface detection

The purpose of the plane detection phase is two-fold:
1. to form a set of ground and non-ground planar models
to be utilised during segmentation; and 2. to obtain priors
on the labelling of pixels as ground or non-ground via
observations gained from pixels along grouped iso-disparity
contours. A greedy region growing algorithm is applied to
group co-planar linear iso-disparity segments and detect all
planar surfaces (or piece-wise planar segments) in disparity.
After comparing and merging surface groupings deemed to
form part of the same physical surface, the surface grouping
spanning the largest image area, in the (assumed known)
direction of the ground plane, is chosen to be the ground
surface grouping (referred to as Mg). All other surfaces are
inserted into the non-ground set: Mn.

C. Step 2: Ground surface labelling

Ground surface segmentation is achieved via the optimi-
sation of an energy function defined over a regular 2D (4-
connected) Markov Random Field, such that:

E(l) =
∑
p∈P

Ep(l) +
∑

(p,q)∈N

Ep,q(lp, lq). (1)

where Ep(l) is the unary potential defined on the assignment
of label l to pixel p, Ep,q(lp, lq) defines a pair-wise cost

function for assigning neighbouring pixels p and q the labels
lp and lq respectively, and N is the set of all neighbouring
pairs. The label l signifies membership (l = ‘g’) or not (l =
‘o’) with the ground surface. We provide a brief description
of the cost components below.

1) Unary costs: The unary potential is defined as:

Ep(l) = βp

(
Mp(l) + Sp(l)

)
+
(
1 − βp

)
Rp(l), (2)

where the label assignment likelihood components are mea-
sured on:

• Mp(l): planar model conformity with surfaces in Ml;
• Sp(l): disparity gradient direction conformity with sur-

faces in Ml; and
• Rp(l): intensity model conformity obtained from pixels

along surface groupings in Ml,
The weight, βp, is used to modulate the relative contributions
of disparity and non-disparity based costs by assessing the
homogeneity of disparity gradient directions within a local
neighbourhood W , centred on p, such that:

βp =
1
N

∑
pi∈W

∣∣∣∇̂Dpi � ∇̂Dµ

∣∣∣, (3)

where N is the total number of pixels in W , ∇̂Dpi is the
disparity gradient direction at pi, and ∇̂Dµ is the mean
disparity gradient direction in W .

2) Pair-wise cost: The pair-wise smoothness term is de-
fined as:

Ep,q(lp, lq) = T (lp ̸= lq)
1
µ

(
∆I(lp, lq) + ∆D(lp, lq) + ∆θ(lp, lq)

)
,

where 1
µ is a normalising scale factor, T (.) is a boolean

function. As is typically done, ∆I and ∆D reduce the cost
of different pair-wise label assignments where an abrupt
intensity or depth change exists. The third pair-wise compo-
nent, ∆θ is introduced to explicitly handle connected surface
boundaries (which neither ∆I or ∆D can guarantee), such
that:

∆θ = exp

(
−1

2

(
Up,q + Vp,q

))
, (4)

where

Up,q =

(
∥∇Dp −∇Dq∥

δu

)2

, (5)

Vp,q =

((
1 − (∇̂Dp � ∇̂Dq))

)
δv

)2

, (6)

∇Dp is the disparity gradient vector at p, and δu and δv

are tunable parameters. Up,q measures the extent of change
of disparity gradient magnitude, and Vp,q, the change of
gradient direction as determined by its closest iso-disparity
contour (which, by definition, is perpendicular to the local
disparity gradient vector).
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D. Optimisation

Optimisation of E(l) is achieved using a standard im-
plementation of the efficient min-cut/max-flow algorithm
(graph-cuts) [17]. Execution time for obtaining the min-cut
is less than a second on a dual core 2.7 GHz processor over
320×240 disparity images. Figures 1(a)(ii) and 2(a)(ii) show
examples of the resulting segmentation.

III. AUGMENTING DEPTH-BASED PHOSPHENE VISION

The proposed depth-based augmentation modifies ground
and non-ground disparity values in distinct ways. Modifi-
cations are executed as a transformation from the source
disparity image, D(p), to an augmented version D∗(p). A
phosphene rendering of D∗(p) is then generated. The binary
ground surface segmentation outlined previously provides a
label mask for determining which modification is applied to
which pixel. We outline both modifications below.

A. Ground surface disparities

All ground surface disparities are replaced by the value
obtained from a planar model of best fit for the ground
surface, such that:

D∗(p) = − 1
γ

(
αpx + βpy + Do

)
, (7)

where p = (px, py) is the image coordinate, and Do is the
disparity of the point projecting along the planar surface
normal (α, β, γ). The planar surface model is obtained
using all disparity values along ground surface iso-disparity
contours (obtained during the surface detection phase). The
restriction of seed points to iso-disparity contours acts as an
outlier remover, as points along a given iso-disparity contours
must have the same disparity.

B. Non-ground disparities

We emphasise the presence of ground plane obstructions
by scaling up the measured disparity of non-ground surface
pixels such that:

D∗(p) = λD(p), (8)

where p is a non-ground pixel, D(p) is the measured
disparity at p, and λ ≥ 1 is the scaling factor.

IV. RESULTS

We compared three scene representations: (i) intensity-
based (phosphenes encode scene luminance), (ii) non-
augmented depth (phosphenes encode surface proximity),
and (iii) augmented depth (the proposed representation).
Each phosphene is computed from regularly sampled pixels
of the original image. Phosphene brightness is determined
by the value, i, of the sampled pixel, (x, y), such that:

p[i, x, y] = beσ

(
i

2di × ssdi−do

)γ

G, (9)

where b is the brightness scale, γ is the desired gamma
setting, G is a discrete Gaussian kernel centred on (x, y), di

is the input dynamic range, and do is the required output dy-
namic range (in bits). To examine the effects of the expected

reduction of dynamic range in current retinal prostheses,
phosphene renderings were computed for dynamic ranges:
do = 6 (6-bit, 64 brightness levels), and do = 2 (2-bit, 4
brightness levels).

Iso-disparity ground surface segmentation was executed
on a sample stereo image pair and disparity data from our
navigation trial environment [12], [13] (Fig 1(a)), and from
a realistic outdoor scene (Fig 2(b)). The top image of both
figures shows the original image, where the most prominent
ground plane obstructions are a black box in the bottom-
centre of Fig 1(a), and a seat and ledge to the left and right
of image in Fig 2(a).

The top rows of Figures 1(b) and 2(b) show the resulting
6-bit phosphene renderings for each of the representations.
In both cases, the augmented depth representation provides
the clearest distinction between traversable space and ground
surface obstacles. In contrast, the intensity-based representa-
tion provides few cues upon which to notice the black ground
obstacle in Figure 1(b)(i), and fails to clearly delineate
surface boundaries in the outdoor scene. Non-augmented
depth improves the visual of the black ground obstacle
(Fig 1(b)(ii)), but conveys insufficient depth variation to
distinguish the seat and step from the ground surface in
Figure 2(b)(ii). All obstructions are clerly evident using
augmented depth (Fig 2(c)(iii)).

The bottom rows of Figures 1(b) and 2(b) show the
corresponding 2-bit representations. Despite the significant
reduction in dynamic range, the augmented depth still pro-
vides a clear distinction of ground surface obstacles. In both
intensity and non-augmented depth, ground surface obstacles
are near impossible to see.

While preliminary, these results demonstrate a clear ad-
vantage for distinguishing traversable and non-traversable
space using the proposed augmented depth representation.
Moreover, this advantage appears to be greater as dynamic
range is reduced.

V. CONCLUSION

We have proposed a novel scene representation to support
obstacle avoidance with a low resolution retinal prosthesis.
By applying iso-disparity analysis to segment traversable and
non-traversable space, we have shown how such information
may be utilised to augment depth-based phosphene vision.
Our results demonstrate that ground obstructions are made
significantly clearer using augmented depth than with inten-
sity or non-augmented depth, and remains informative when
dynamic range is reduced. This suggests ground surface seg-
mentation is an important operation for maintaining workable
scene representations at low resolution and dynamic range.
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Fig. 2. Outdoor scene results. See Fig. 1 for explanation.
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