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Abstract— This paper introduces ongoing research on
computer-aided ophthalmic surgery. In particular, a novel
Content-Based Video Retrieval (CBVR) system is presented.
Its purpose is the following: given a video stream captured by
a digital camera monitoring the surgery, the system should
retrieve, in real-time, similar video subsequences in video
archives. In order to retrieve semantically-relevant videos, most
existing CBVR systems rely on temporally flexible distance
measures such as Dynamic Time Warping. These distance
measures are slow and therefore do not allow real-time retrieval.
In the proposed system, temporal flexibility is introduced in the
way video subsequences are characterized, which allows the use
of simple and fast distance measures. As a consequence, real-
time retrieval of similar video subsequences, among hundreds
of thousands of examples, is now possible. Besides, the proposed
system is adaptive: a fast training procedure is presented. The
system has been successfully applied to automated recognition
of retinal surgery steps on a 69-video dataset: areas under the
Receiver Operating Characteristic curves range from Az=0.809
to Az=0.989.

I. INTRODUCTION

Automated analysis of video content, in the context of
video-monitored surgery, is an increasingly active research
field. Several methods have been proposed to identify key
surgical events [1], categorize surgical stages [2], detect
surgical tools (for augmented reality purposes) [3], or finely
analyze regions of interest (through image mosaicing) [4].
In line with all these works, a study has been initiated at
the LaTIM laboratory to setup an alarm/recommendation
generation system for video-monitored surgery. The goal is
to analyze the video stream in real-time and warn the surgeon
whenever a risky situation is detected (alarm generation) or
let the surgeon know what a more experienced fellow worker
would do in a similar situation (recommendation generation).

To achieve this goal, we focused on the Content-Based
Video Retrieval (CBVR) paradigm. The purpose of CBVR
systems is to find, within digital archives, videos that re-
semble a query video. In CBVR, similarity between videos
relies on motion, shape, texture, or color analysis. Initially
popularized in video surveillance applications [5], CBVR
recently started developing in other applications. For in-
stance, its use for medical training is now considered [6].
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CBVR systems typically accept a video file as input, and
display similar video files on output [7]. In that sense, typical
CBVR systems generalize Content-Based Image Retrieval
systems [8]. A more ambitious scenario is considered in this
paper: we propose to analyze, in real-time, the video stream
captured by a digital camera and constantly search similar
video subsequences in digital video archives. The search
results can be used to generate alarms or recommendations
whenever necessary.

When searching for similar video subsequences, and not
simply video files as a whole, the number of items that
should be compared to the query item explodes. In order to
meet the real-time constraint, a very fast similarity measure
must therefore be used to compare video subsequences. In
particular, the use of temporally flexible, but slow, distance
measures (such as Dynamic Time Warping [9], [7]) is prohib-
ited. However, temporal flexibility is required to cope with
speed differences among surgeons. An alternative solution
is proposed in this paper: temporal flexibility is directly
introduced in the way video subsequences are characterized.

II. VIDEO SUBSEQUENCE CHARACTERIZATION

A. Video Subsequences

Variable-length video sequences are considered in this
paper: typically, each video sequence depicts a surgery step
(§IV). From each video sequence V , several fixed-length
video subsequences Si were extracted. Si consists of N
consecutive images from V : Si =

{
Ii1, I

i
2, ..., I

i
N

}
. Note that

two consecutive subsequences overlap: Iin = Ii+1
n−1.

In order to include temporal flexibility in the way subse-
quences are characterized, images in Si were organized in M
equivalence groups Gi

m ⊂ Si, m = 1..M (see Fig. 1); within
an equivalence group, temporal order was ignored. Note that
one image may belong to several equivalence groups (see
Fig. 1 (c)).

To characterize a video subsequence Si, each image Iin ∈
Si was first characterized individually (§II-B). Then, these
characterizations were combined by equivalence groups and
finally by video subsequence (§II-C).

B. Characterizing one Image in the Subsequence

In order to characterize each image Iin ∈ Si, texture and
color features were extracted from Iin and motion features
were extracted from the optical flow between Iin−1 and Iin.

Texture and color features were extracted from the wavelet
transform of each color channel of Iin: for each color channel,
the distribution of the wavelet coefficients was characterized

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 4465

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



tt−32 t−28 t−24 t−20 t−16 t−12 t−8 t−4
time

groups

(a)

tt−15t−21t−36 t−3t−6t−10t−28

groups

time

(b)

tt−16t−32 t−8 t−4 t−2

groups

time

(c)

Fig. 1: Examples of temporal setups. In examples (a) and (c) (resp. (b)), each subsequence consists of N = 32 (resp.
N = 36) images. In examples (a) and (b) (resp. (c)), each subsequence consists of M = 8 (resp. M = 6) equivalence
groups.

by a parametric model, as described in a previous paper from
our group [8] (that paper was about still image retrieval).

To extract motion features, strong corners were first de-
tected in Iin−1. These corners were selected, among all image
pixels p, with respect to the smallest eigen value of matrix
Mp below:

Mp =

(
Ap Bp

Bp Cp

)
Ap =

∑
(x,y)∈Np

(
dIi

n

dx (x, y)
)2

Bp =
∑

(x,y)∈Np

dIi
n

dx (x, y) · dI
i
n

dy (x, y)

Cp =
∑

(x,y)∈Np

(
dIi

n

dy (x, y)
)2

(1)

whereNp is a neighborhood of pixel p. Then, the optical flow
between Iin−1 and Iin was computed at each strong corner
by the Lucas-Kanade iterative method [10]. The OpenCV1

library was used to select strong corners and compute the
optical flow. Motion was characterized by an amplitude
histogram, an amplitude-weighted spatial histogram and an
amplitude-weighted directional histogram.

Let f i
n be the feature vector containing all features ex-

tracted from Iin and the optical flow between Iin−1 and Iin.

1http://opencv.willowgarage.com/wiki/

C. Characterizing the Subsequence

Each equivalence group Gi
m ⊂ Si was characterized by

the mean of all feature vectors f i
n such that Iin ∈ Gi

m: let
f̆
i

m be that average feature vector. As for subsequence Si,
it was initially characterized by the concatenation of all f̆

i

m

vectors, m = 1..M : let f̂
i

be that compound feature vector.
Note that equivalence groups in a subsequence are likely to
be correlated. It follows that feature vectors f̆

i

m also are.
In order to obtain more compact feature vectors, with less
correlated components, a principal component analysis of all
vectors f̂

i
in a training set was performed [11]. Then, f̂

i
was

replaced by its projection f̄ i on the C principal components2.
Remember that two consecutive subsequences from the

same sequence overlap (§II-A). Therefore, to characterize
subsequence Si, only the last image IiN ∈ Si actually needs
to be characterized (§II-B): a FIFO queue was used to store
the last N − 1 image characterizations in memory.

III. SIMILAR VIDEO SUBSEQUENCE RETRIEVAL

A. Real-time Comparison of Subsequence Characterizations

Working with fixed-length characterizations (f̄ i) has one
major advantage: these characterizations can be sought with

2C was chosen such that 90% of the energy is preserved.
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(a) Injection (b) Coat (c) Vitrectomy

Fig. 2: Images from Brest Retinal Surgery Dataset

very fast search engines, such as k-d trees [12] or Locality-
Sensitive Hashing [13]. ANN3, a fast variation on k-d trees,
was used in this study. In ANN, feature vectors are compared
with the squared Euclidean distance.

In order to fill the semantic gap between low-level charac-
terizations and the high-level concept of semantic distance,
each component f̄ ic of feature vector f̄ i was weighted by
λc ≥ 0, c = 1..C.4 Because training video sequences (i.e.
video sequences in the training set) have only been inter-
preted by experts as a whole, weight adjustment couldn’t be
supervised at the video subsequence level. This problem was
addressed by adjusting weights at the video sequence level
(§III-C). The semantic distance between two training video
sequences U and V was defined as follows: DS(U, V )=0 if
U and V belong to the same class, DS(U, V )=1 otherwise. A
low-level distance DN(U, V ) was defined: the computation
of DN(U, V ) derives from {λc, c = 1..C} and all feature
vectors f̄ i extracted from U and V (§III-B).

B. Comparing Video Sequence Characterizations

For each feature vector component c = 1..C, a partial low-
level distance DNc(U, V ) was defined to compare two video
sequences U and V . DNc(U, V ) was defined as the maxi-
mal deviation between the Cumulative Distribution Function
(CDF) of

{
f̄ ic/Si ∈ U

}
and the CDF of

{
f̄ jc /Sj ∈ V

}
. In

other words, DNc(U, V ) is the Kolmogorov-Smirnov statis-
tic of the equality test of

{
f̄ ic/Si ∈ U

}
and

{
f̄ jc /Sj ∈ V

}
[14].

C. Feature weighting

Let T be the number of video sequences in the training
set. Let T ′ = 1

2T (T − 1) be the number of pairs of video
sequences. For each video sequence pair (U, V ), one se-
mantic distance DS(U, V ) and C partial low-level distances
DNc(U, V ) (§III-B) were computed. Semantic distances
were grouped together in a vector ds of size T ′. Low-level
distances were grouped together in a matrix DN of size
(T ′×C). The weight vector λ = {λc, c = 1..C} minimizing
the sum of the squared errors between ds and DN · λ was
computed with the multi-parameter linear fitting function

3http://www.cs.umd.edu/ mount/ANN/
4It amounts to weighting the cth term in the squared Euclidean distance

by λ2c .

implemented in the GNU Scientific Library5. Whenever a
negative weight λc was obtained, it was replaced by its
absolute value; a more mathematically acceptable solution
would consist in adding a positivity constraint in the fitting
process, at the cost of increased computation times. Once
computed, these weights were used for real-time retrieval of
similar video subsequences (§III-A).

IV. BREST RETINAL SURGERY DATASET

The proposed framework has been applied to a reti-
nal surgery dataset collected at Brest University Hospital
(France). This dataset consists of 23 videos, each depicting
one Epiretinal Membrane Surgery (EMS) performed by
a retina surgeon. EMS is the most common vitreoretinal
surgery6. It involves a pars plana vitrectomy procedure with
membrane peeling (see Fig. 2). Videos have an average
length of 621s (standard deviation: 299s) and images have
a definition of 720x576 pixels. About 350,000 video subse-
quences were extracted from the entire dataset, as explained
in previous sections.
Retrospectively, the surgeon has divided each video into three
new video sequences, each corresponding to one step of the
EMS: Injection, Coat and Vitrectomy. As a result, 69 video
sequences have been obtained. For each EMS step, a class
(1=”corresponds to”, 0=”does not correspond to”) has been
assigned to each of these 69 sequences.

V. EXPERIMENT

For each surgery step, and for each temporal setup shown
in Fig. 1, performance has been assessed in terms of Az ,
the area under the Receiver Operating Characteristic (ROC)
curve. A 2-fold cross-validation strategy was adopted: the 23
surgeries were divided into two sets of approximately equal
size. Alternatively, one of these sets was used as test set, and
the other one as training set.
First, a weight vector has been adjusted on the training set
(§III-C). Second, for each video subsequence in the test set,
the five most similar subsequences in the training set have
been retrieved, as described in section III-A. Third, for each
video sequence V in the test set, the probability pV that V
belongs to class 1 has been computed. pV was defined as

5http://www.gnu.org/software/gsl/
6http://eyewiki.aao.org/Epiretinal Membrane
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TABLE I: Performance evaluation (Az) on the test set

temporal setup (see Fig. 1) (a) (b) (c)
Injection 0.870 0.842 0.901

Coat 0.977 0.977 0.989
Vitrectomy 0.809 0.778 0.793

the percentage, across all subsequences of V , of retrieved
video subsequences coming from a training video sequence
in class 1. Finally, the Az has been estimated using all pV
values. Results are presented in table I. In all experiments,
search times (subsequence characterization + search itself)
were less than 1

25 seconds.

VI. CONCLUSION

A novel Content-Based Video Retrieval (CBVR) frame-
work, allowing retrieval of video subsequences, has been
presented in this paper. By introducing temporal flexibility
in the way video subsequences are characterized, the use of
flexible distance measures, such as Dynamic Time Warping
[9], has been avoided. Transferring flexibility from the dis-
tance measure to the characterization allowed real-time re-
trieval (< 1

25 seconds) of similar video subsequences among
hundreds of thousands of video subsequences. Because the
proposed distance measure is adaptive, retrieval was not only
fast but also semantically relevant (see table I). It can be seen
that the optimal temporal setup depends on the surgery step
considered. After adapting the time scale and the temporal
setup, the proposed framework could be applied to computer-
aided video-monitored ophthalmic surgery. This framework
is indeed ideally suited to this context: image subsequences
captured by the camera can be constantly compared to similar
video subsequences in surgical video archives. Therefore,
alarms and/or recommendations can be generated whenever
needed. A larger surgical video dataset is currently being

collected and interpreted at Brest University Hospital; it will
allow such an experiment in future works.
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