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Abstract— Positron emission tomography – computed tomog-
raphy (PET-CT) produces co-registered anatomical (CT) and
functional (PET) patient information (3D image set) from a
single scanning session, and is now accepted as the best imaging
technique to accurately stage the most common form of primary
lung cancer – non-small cell lung cancer (NSCLC). This paper
presents a content-based image retrieval (CBIR) method for
retrieving similar images as a reference dataset to potentially
aid the physicians in PET-CT scan interpretation. We design
a spatial distribution to describe the spatial information of
each region-of-interest (ROI), and a pairwise ROI mapping
scheme between images to compute the image matching level.
Similar images are then retrieved based on the local and spatial
information of the detected ROIs, and a learned weighted sum
of ROI distances. Our evaluation on clinical data shows good
image retrieval performance.

I. INTRODUCTION

Digitized medical images are produced in ever increasing
quantities and are an essential component of modern health
care. It has been suggested that the physicians can gather
valuable information from the large collection of images
for decision support, by using CBIR to retrieve images
similar to a given one [1]. Unlike the early CBIR systems,
which perform image retrieval by extracting low-level visual
features, such as texture and shape on the image content,
more recent approaches extend the searching capability to
high-level semantic concepts in predominantly two ways:
(i) the low-level features are classified into a number of
concept categories and represented as bag-of-features for the
whole image [2], [3]; and (ii) the low-level features are first
classified to detect regions of interest (ROIs) from the image
of objects which are relevant to the classification of the
image, and local features extracted for the ROIs are used
to compute image dissimilarity [4], [5].

The bag-of-features model usually builds on image blocks,
so the division of blocks can introduce problems when a
block is at an object boundary. The ROI based methods
can mitigate such problems by localizing the objects first.
Both bag-of-features and ROI based feature representations
normally ignore the spatial relationships between the image
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patches (blocks or ROIs), causing loss of structural infor-
mation. Rahman et.al. addressed the problem by introducing
a sliding-window based structural descriptor [2]; and Avni
et.al. included the coordinates of the image patches in the
feature vector [3]. More popular approaches for encoding the
spatial information have been proposed in general computer
vision, including spatial pyramid matching [6], directional
spatial histogram [7], and visual words and phrases [8].

For PET-CT thoracic images with PET tracer 18F-fluoro-
deoxy-glucose (FDG), the primary lung tumor and metastatic
disease in regional lymph nodes, which typically exhibit
higher FDG uptake than surrounding normal structures, are
usually considered as the main ROIs for diagnosis and
therapy planning, motivating the work on tumor and lymph
node segmentations [9], [10]. It will be beneficial, however,
to also consider the spatial location of the ROIs relative to the
lung and mediastinum, as it is important for staging NSCLC.
In this context, a CBIR method for thoracic images should
retrieve images that are not only similar in local ROI features,
but also in the spatial features of the ROIs. For example, an
image with a primary tumor near to the mediastinum should
be matched to images with similar patterns.

The objective of our work is thus to design an image
retrieval method for thoracic PET-CT images with NSCLC,
based on the presence and spatial information of tumors and
disease in lymph nodes. We approach the problem by first
detecting the ROIs using support vector machines (SVM)
on mean-shift clustered image regions; then extract the
spatial location for each ROI relative to other structures; and
compute the dissimilarity between the query image and the
images in the database by creating a pairwise ROI mapping.

II. METHODS
A. Appearance-based ROI Detection

At the first stage, we detected the ROIs, such as tumor
or disease in regional lymph nodes, from the thoracic 3D
image set. The detection was designed to support the image
matching, with the following criteria: (i) we preferred to de-
tect only the tumors and abnormal lymph nodes, minimizing
the inclusion of high uptake regions in the mediastinum; (ii)
it was acceptable to include some spurious regions as ROI,
rather than missing any true abnormal areas; and (iii) while
considered beneficial, a good ROI delineation and precise
segmentation are not required for the image matching.

We designed a three-step method for the detection. First,
each PET-CT transaxial slice pair was clustered into regions
using mean-shift clustering [11] by first clustering the CT
and PET slices separately, then superimposing the clustering
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outputs from both modalities into one set of regions. We
chose to use the mean-shift clustering because it could better
preserve the edges, and the resulting regions approximated
the contours of the structures well; and it could determine the
number of reqruied clusters for the image data dynamically.

Then, we classified each of the regions into one of three
classes – the lung field, mediastinum and ROI. They could be
distinguished based on the average CT density and standard
uptake values (SUV) for PET, and we trained a three-
class one-versus-all SVM for the classification. Note that we
classified both tumors and abnormal lymph nodes (and if
any non-pathological ROIs with relatively high uptake) as
the same type – ROI, to avoid complicated procedures for
discriminating between these types; and they were differen-
tiated when computing the image dissimilarities (section C).

At the third step, a 3D connected component analysis
was performed to group the spatially adjacent ROIs across
transaxial slices into one volumetric ROI.

B. Spatial Distribution Description

We then described the spatial information of the detected
ROIs in feature vectors, to facilitate the image matching. The
spatial information was important, as we wanted to retrieve
image sets with ROIs appearing at the similar position –
near the chest wall or mediastinum, or well within the lung
field (tumor) or mediastinum (lymph nodes). The commonly
used bag-of-feature or bag-of-region representations, which
neglect the relative spatial locations, were thus not sufficient.

To compute and encode the spatial relationships between
the ROIs and the lung fields and mediastinum, a 4-directional
circular spatial distribution was designed (Figure 1). Origi-
nating from the ROI boundary, No contours grew towards
outside of the ROI and Ni contours towards inside of the
ROI. The contours were of width d pixels, displacement from
the ROI border or the previous contour. Each contour was
divided into four bins, in the direction of anterior, posterior,
lateral and medial of the thorax, relative to the ROI. Each
bin counted the number of voxels belonging to class t – lung
field (LF), mediastinum (MS) or ROI:

ht
c,b =

∑
i

1|yi=t| (1)

where c and b indexed the contour and bin in the contour, and
yi was the class label of voxel i. The outside bins described
the spatial information, e.g. an ROI (tumor as in Figure 1b)
near to the mediastinum would have large hMS

c,b in the medial
bins but large hLF

c,b in other bins. The inside bins represented
roughly the shape of the ROI, depicted by the ratio among
the four bins. The spatial distribution descriptor H was an
ordered concatenation of all bins, accumulated over all image
slices, weighted by the ratio between the size of ROI in the
slice and the whole ROI volume, and computed for each
volumetric ROI present in the 3D image set (Algorithm 1).

This spatial distribution was translation invariant, since
each descriptor H was centered around the ROI. We made
the descriptor scale and rotation variant, because they were
important for discriminating the spatial information between

(a)

(b)

Fig. 1. Illustration of the spatial distribution bins. (a) Conceptual diagram
(abstract view with ideal round circles). (b) Overlay of the borders of the
contours (white lines) on the detection output (showing one transaxial slice
only), with contours (No = 2 and Ni = 1) centered around the detected
ROI, and the directional lines in red color.

Algorithm 1: Computing the spatial distribution
Data: 3D image set I comprising SI transaxial slices

with class labels YI , and containing RI ROIs.
Result: spatial distribution HI,r for each ROI r in I.
initialization;
for r = 1, ...RI do

for s = 1, ...SI do
if ROI r present in slice s then

Create No contours outside of ROI r, and
Ni contours (of width d) inside of ROI r;
for c = 1, ...No, and 1, ...Ni do

Divide the contour c into four bins;
Compute the feature vector ht

c,b;
Hs

I,r = Hs
I,r | ht

c,b;
end
HI,r = HI,r + Hs

I,r × areasI,r;
end

end
HI,r = HI,r / volumeI,r;

end

ROIs. No was chosen as 3 to describe the nearby areas of
the ROI, Ni was 1 to outline the ROI contour, and d was set
to 8 pixels empirically.

C. Discriminative Feature Matching

Given 3D image set I1, each volumetric ROI i of I1 was
then described by the feature vector f1i, which comprised
the spatial descriptor HI1,i, size of the ROI, and its texture
statistics (mean, standard deviation, skewness and kurtosis)
for both CT and PET. The image dissimilarity D between
two image sets I1 and I2 was computed as the distance
between the two sets of ROI descriptors, f1 and f2:

D(I1, I2) =
∑

{f1i,f2j}∈M

u1i ∆(f1i, f2j) (2)
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Fig. 2. Illustration of mapping between ROIs in I1 and I2 – ROI Set 1
(tumor) denoted with 1 and ROI Set 2 (abnormal lymph nodes) denoted
with 2; and the pairwise ROI distances between the mapped ROIs denoted
as ∆(f11, f21) and ∆(f12, f22). Simplifying the illustration with only one
ROI in each set, and the 3D volumes of ROIs shown as a 2D transaxial
slice view.

∆(f1i, f2j) = 〈w · |f1i − f2j |
f1i + f2j

〉 (3)

Here the matrix M indicated the pairwise mapping be-
tween ROIs in I1 and I2, so that the image dissimilarity was
computed as a weighted sum of the pairwise ROI differences
between the mapped ROIs. The weight u1i was the ratio
between the size of ROI i and all ROIs in I1. The mapping
M was supposed to observe a contextual map, i.e. ROIs in I1
representing tumors should be mapped to tumor ROIs in I2,
and similarly for ROIs representing abnormal lymph nodes
(Figure 2). To create such mapping, the ROIs in each 3D
image set were first divided into two sets: Set 1 – likely to
be tumor; and Set 2 – likely to be abnormal lymph nodes.
Each set could contain multiple ROIs, and the division was
based on the location of the ROI relative to the lung and
mediastinum, computed by the proportion of voxels labeled
as lung field in the spatial distribution of the ROI, using
k-means clustering (2 clusters). For Set 1 of I1 and I2, a
one-to-one mapping was generated by first sorting the ROIs
based on their sizes separately for Set 1 of I1 and I2, then
aligning the ROIs between I1 and I2 in the sorted order. For
Set 2, each ROI in I1 was mapped to the ROI in I2 having the
minimum distance, thus the mapping could be many-to-one.
If there were fewer ROIs in Set 1 of I2 than Set 1 of I1, the
one-to-one mapping for Set 1 implied that some ROIs in Set
1 of I1 would be left unmapped, which were then mapped
to Set 2 of I2 based on the minimum distance.

The pairwise ROI difference ∆(f1i, f2j) was weighted by
vector w, which controlled the level of contribution of each
feature dimension. We derived w with the triplet-learning
method. A triplet 〈I1, I2, I3〉 denoted that I1 was similar to
I2 and dissimilar to I3; and it was thus expected to satisfy
D(I1, I3) > D(I1, I2), which could be rewritten as the
following:

〈w ·
∑

u1i
|f1i − f3j |
f1i + f3j

〉 > 〈w ·
∑

u1i
|f1i − f2j |
f1i + f2j

〉 (4)

With a set of training triplets, w was then solved using the
large-margin optimization method [12].

D. Materials and Evaluation Study

A total 1134 transaxial thoracic PET-CT slice pairs were
selected manually from 40 studies (3D image sets) to filter
out non-thoracic image slices. The images were acquired us-
ing a Siemens TrueV 64 PET-CT scanner (Siemens, Hoffman

Estates, IL) at the Royal Prince Alfred Hospital, Sydney. For
each study, the other 39 image sets were manually marked
as similar or dissimilar as the ground truth for retrieval. The
similarity of image sets was determined based on the location
and appearance of the tumor and abnormal lymph nodes. The
number of similar image sets for each set ranged from 1 to
11, with an average of 4.75.

Fully-automatic preprocessing was performed on each CT
slice to remove the patient bed and soft tissues outside of
the lung and mediastinum, based on simple thresholding,
morphological operations and connected component analysis.
The resulting mask was then mapped to the co-registered
PET slice.

The image retrieval performance was evaluated by using
each 3D image set as a query image, and the other 39 sets
were ranked according to their similarity level with the query
image. The retrieval results were then compared with the
ground truth to calculate the precision and recall. Since we
expected that normally physicians would be interested to
look at only the first few retrieved images, we focused on
assessing the top one, three and five retrievals.

Besides our proposed method, we also evaluated the
retrieval performance with equal weights (all ones) in the
distance function (3); replacing our pairwise ROI mapping
scheme to a minimum sum distance based approach; and
computing the image dissimilarity based on the local ROI
features only, i.e. its texture, size and location (coordinates),
without the spatial distribution descriptor.

We then compared our method with three standard ap-
proaches: (i) global histogram (HIST), with 256 bins for CT
and 256 bins for PET; (ii) bag-of-features (BOF), classifying
8 by 8 image patches into 7 clusters (the sizes were chosen
to have the resulting BOF approximate the original image
appearances closely); and (iii) spatial pyramid matching
(SPM), with 3 levels (as suggested in the original paper [6])
based on the BOF representation.

III. RESULTS

Our method achieved 100% true positive rate (TPR) for
ROI detection that all abnormal areas, i.e. tumors and dis-
ease in regional lymph nodes, were correctly detected. The
detection precision was 66.4% with some non-pathological
areas with high uptake values (e.g. myocardium) in the
mediastinum detected as ROIs as well. Because our image
dissimilarity was computed based on localized ROIs, exclu-
sion of any important ROI would result in incomplete feature
representation of the image. So, the high detection TPR was
desired. The low precision was a compromise to achieve the
high TPR; the extra ROIs detected were normally small in
size thus had low impact on the dissimilarity computation.
Examples of the ROI detection are shown in Figure 3.

The average retrieval precision and recall of our method
are listed in Table I, column Ours. With equal weights in the
distance function, lower precision and recall was observed
(Table I, column EqW), which suggested the benefit of
using learning-based feature weights. The lower results from
the minimum sum distance based approach (column MinD)
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Fig. 3. Three examples of ROI detection, showing one transaxial slice
pair per patient study. The left column is the CT image slice (after
preprocessing); the middle column is the co-registered PET slice; and the
right column is the classification output.

TABLE I
THE PRECISION (P) AND RECALL (R) MEASURE OF THE RETRIEVAL

RESULTS OF THE TOP ONE, THREE OR FIVE MOST SIMILAR MATCHES.

P (%) Ours MinD EqW ROI HIST BOF SPM
Top-1 80.7 74.2 54.8 67.7 48.4 19.4 67.7
Top-3 69.4 64.5 58.6 59.7 45.2 28.0 59.7
Top-5 61.1 59.0 49.4 57.3 41.9 34.0 55.2

R (%) Ours MinD EqW ROI HIST BOF SPM
Top-1 25.1 23.2 18.2 23.8 14.5 8.3 19.4
Top-3 48.6 45.5 39.4 43.1 26.9 19.1 39.7
Top-5 59.1 56.4 46.0 55.2 36.6 35.6 52.8

indicated the advantage of creating a customized pairwise
ROI mapping between two images. The image dissimilarity
based on the local ROI features only also resulted in lower
precision and recall (column ROI), which were expected due
to omission of the spatial information.

The precision and recall values of the three standard
approaches are listed in Table I (column HIST, BOF and
SPM) for top retrievals, and the average precisions for all
levels of recall are shown in Figure 4. All three approaches
incorporated the same feature weight training for the distance
function as our method. If without the optimized feature
weights, the average precisions of the three compared meth-
ods were 5-8% lower than the listed values. HIST performed
better than BOF, although we tried to choose the best settings
for BOF; and we believe it was mainly due to the subdivision
of image patches around the object boundaries. As expected,
SPM improved considerably over BOF and HIST, since it
modeled the spatial information. However, the hierarchical
structure of SPM was based on the image dimension only
with even sub-level divisions, and not centralized on ROIs;
hence the descriptor was not translation invariant, and this
would result in large difference between images due to
translation only. Our method effectively shifted the center
of the hierarchy to the ROIs, and assigned higher weights to
the nearby image patches with our spatial distribution design;
and thus achieved higher results.

Fig. 4. The precision-recall curve of the retrieval results.

IV. CONCLUSIONS

We proposed a new method for retrieving PET-CT images
with similar location and appearance of the lung tumor and
abnormal lymph nodes. Three major components contributed
to the high retrieval performance: clustering and classifi-
cation based ROI detection, ROI feature description with
spatial distribution, and an image dissimilarity measure based
on pairwise ROI mapping and optimized feature weights.
Based on the evaluation results on 40 NSCLC patient studies,
our system showed high retrieval precision and recall, and
outperformed other proposed techniques.
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