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Abstract—In this article, we present a novel reversible 

watermarking scheme. Its originality stands in identifying parts 

of the image that can be watermarked additively with the most 

adapted lossless modulation between: Pixel Histogram Shifting 

(PHS) or Dynamical Error Histogram Shifting (DEHS). This 

classification process makes use of a reference image derived 

from the image itself, a prediction of it, which has the property 

to be invariant to the watermark addition. In that way, 

watermark embedded and reader remain synchronized 

through this image of reference. DEHS is also an original 

contribution of this work. It shifts predict-errors between the 

image and its reference image taking care of the local 

specificities of the image, thus dynamically. Conducted 

experiments, on different medical image test sets issued from 

different modalities and some natural images, show that our 

method can insert more data with lower distortion than the 

most recent and efficient methods of the literature. 

I. INTRODUCTION 

or about ten years, several reversible watermarking 

schemes have been proposed for protecting images of 

sensitive content, like medical images for which any 

modification may impact their interpretation. These methods 

allow the user to restore exactly the original image from its 

watermarked version by removing the watermark. It 

becomes thus possible to update the watermark content, as 

for example security attributes (e.g. one digital signature or 

some authenticity codes), at any time without adding new 

image distortions. However, if the reversibility property 

relaxes invisibility constraints, it may also introduce 

discontinuity in data protection like for data encryption. In 

fact, the image is no more protected once the watermark 

removed. So, even though watermark removal is possible, its 

imperceptibility has to be guaranteed as most applications 

have a high interest to keep the watermark in the image as 

long as possible, thus continuously protecting the 

information in its storage, transmission and also processing 

[1]. This is the reason why, there are still needs for 

reversible techniques that introduce the lowest distortion as 

possible with high embedding capacity.  

The concept of reversible watermarking has been 

introduced by Mintzer et al. [2] in 1997. Basically, the 

watermark signal is added to the image taking care not 
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introducing gray level value under-flows (negative) and 

over-flows (greater than 2
d
-1 for a d bit depth image). To 

satisfy this constraint, Honsinger et al. [3] add the 

watermark w to the image I using arithmetic modulo: 

Iw = (I + w) mod Vmax, where Vmax corresponds to the 

maximum value of the signal dynamic range and Iw 

corresponds to the watermarked image. Though this method 

avoids over/underflows it may introduce a salt and pepper 

noise due to jumps between congruent values of the image 

histogram. Since, several other methods have been proposed.  

In [4], Ni et al. introduced the famous Histogram Shifting 

(HS) modulation. HS adds gray values to some pixels in 

order to shift a range of the image histogram and create a 

‘gap’ near the histogram maxima. Pixels which belong to the 

class of the histogram maxima are then shifted to the gap or 

kept unchanged to encode one bit of the message ‘0’ or ‘1’. 

Instead of working in the spatial domain, several schemes 

apply HS to some transformed coefficients or pixel predict-

errors which histograms are concentrated around one single 

maxima located on zero. This maximizes HS capacity [5-7] 

and also simplifies maxima location within the histogram. In 

[5], Thodi et al. applied HS to the difference of two adjacent 

pixels for data embedding. In [6], we extended Ni et al. 

scheme to Haar wavelet coefficients which have a 

“Laplacian” distribution. Recently in [7], Sachnev et al. 

come back into the spatial domain and propose to predict 

pixel value through its four nearest neighboring pixels. They 

apply HS to the predict-error and achieve better 

performances than any existing schemes. In fact, it appears 

that the shape of their predict-error distribution has a smaller 

variance than pixel difference distribution.  

Even though a better predictor can improve HS capacity, 

this one is actually uniquely defined for the entire image in 

the above strategies. In the sequel, we show up how local 

specificities of the image can be used to improve embedding 

capacity. These specificities are identified from the image 

predict-errors. We name our method Dynamical Error 

Histogram Shifting (DEHS) and introduce it in section II. 

Moreover, depending on the image content, Pixel 

Histogram Shifting (PHS) may be more efficient than 

Predict-Error Histogram Shifting (PEHS). That is the case 

for medical images which usually contain a lot of black 

background (i.e. pixels of null gray value). In this region 

where PEHS makes more difficult the management of 

over/underflows, PHS will provide better results with less 

complexity (the black background histogram maxima 
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Let us consider the pixel block in figure 1c. Let us also 

assume that we aim only at watermarking ei,j/pi,j leaving 

intact pi,j neighborhood. For each of the eight neighbors of 

pi,j: {pi-k,j-l}k,l =-1 …1, we can get a predict-error ei-k,j-l. 

However, because pi,j will be modified for insertion, we use 

jip ,
ˆ instead of pi,j in their calculation (e.g. 

jijiji ppe ,1,1,1
ˆ

−−− −=  

with ( ) 4ˆˆˆ
1,1,1,1,2,1 −−+−−− +++= jijijijiji ppppp ). Because of the 

local stationnarity of the image signal we can assume 

without too much risk that contiguous predict-errors have the 

same behavior. As a consequence, we suggest to consider as 

class of reference Cr the histogram range to which belong 

the absolute values of predict-errors: {|ei-k,j-l|}k,l =-1 …1. In the 

sequel, we propose to use as reference class Cr = [me-∆/2, 

me+∆/2[, where me is the mean value of {|ei-k,j-l|} k,l =-1 …1. As 

it can be noticed by the reader, DEHS is applied one predict-

error absolute value and not on the predict-error directly. 

The reason stands in the fact that contiguous predict-errors 

are distributed around the zero value. Thus, their mean 

results in placing Cr centered on zero. This gives no 

advantages compared with PEHS. Anyway, as defined, our 

reference class Cr is determined dynamically for each 

predict-error of the image. Cr location is also refined 

independently of pi,j,, it will be retrieved by the reader. 

DEHS is more appropriate for regions where the image 

signal is non-null.  

C. Invariant image classification 

The purpose of this classification is to identify parts of the 

image where to apply PHS and DEHS in order to gain in 

terms of capacity while minimizing image distortion. For 

medical images this is somewhat equivalent to distinguish 

the image black background from the anatomical object.  

As stated before, our classification process exploits a 

reference image Î  derived from the image I itself. Î is a 

predicted version of I so as to keep image signal properties. 

The originality of our approach resides in the fact that Î  

remains unchanged after I  has been watermarked.  

Before presenting this process, it is important to notice 

that in our concern the embedding process is conducted in 

several pass. In fact, in each pass we consider only a quarter 

of the pixels. Pixels watermarked in one pass are not re-

watermark and at each time a classification process is done.  

Let us consider one pass and the set of pixels indentified 

by a “cross” in figure 1c. In this block, only pi,j will be 

modified. We recall that shifting ei,j by +/- ∆ results in 

adding/subtracting ∆ to pi,j.  

In order to decide which HS modulation to apply on pi,j, 

we propose to consider its predicted value jip ,
ˆ . jip ,

ˆ does not 

depend on pi,j or on its watermarked version. Consequently, 

it remains invariant to the insertion process. Thus, in one 

pass, the reference image Î  contains predict-pixels. Our 

classification process is then rather simple. Considering a d 

bit depth image, if jip ,
ˆ < ∆ or jip ,

ˆ > (2
d
-1) – ∆, then pi,j 

belongs to the PHS region otherwise to the DEHS region.  

D. PHS and DEHS under/overflow management 

Even though PHS and DEHS regions are identified, we 

still have to face the overflow and underflow issue.  

• PHS underflows/overflows  

According to the previous classification PHS is applied to 

two distinct parts of the signal dynamic identified by jip ,
ˆ < ∆ 

(low-part) and jip ,
ˆ > (2

d
-1) – ∆ (high-part). Because in the 

low-part (high-part resp.) PHS shifts pixels by adding 

(subtracting resp.) one gray value; there is no risk of 

underflow (overflow resp.). This is not the case for the 

DEHS.  

• DEHS underflows/overflows  

By definition, DEHS results in adding/subtracting ∆ to 

pixels. Whence, some pixels may lead to an under/overflow 

if watermarked. To distinguish “watermarkable” pixels, i.e. 

pixels which can be modified, from the others, we propose a 

second classification process (similar to the one depicted in 

details in [8]). Let us consider again one block B
k
 of the 

image I (see fig. 1c) and one insertion pass. Beside p
k
i,j, none 

of its eight nearest neighbors are modified. It is then possible 

to characterize B
k
 from its invariant reference block: 

[ ]k

ji

k

ji

k

ji

k
pppB 1,11,1, ,...,,ˆˆ

++−−
= through two characteristics 

defined as k
Bmin
ˆ and k

Bmax
ˆ which correspond to the minimum 

and maximum values of ˆ kB respectively. Then, considering 

the No and Nu blocks that if watermarked lead to an overflow 

or and underflow respectively, we can identify two 

thresholds Tmin and Tmax: 

Tmin = max n=0…Nu (
nBmin

ˆ ); Tmax = min m=0…No (
m

Bmax
ˆ )     (1) 

A block B
k
 or its corresponding pixel p

k
i,j is considered as 

watermarkable if it satisfies the following constraints: 

kBmin
ˆ > Tmin and kBmax

ˆ < Tmax             (2) 

otherwise, it is considered as non-watermarkable and will be 

left unchanged in the image. Again, classification is 

conducted on invariant measures; the reader will re-identify 

easily these non-watermarkable pixels.  

E. Proposed scheme  

To sum up, our algorithm goes through the image between 

in one to four times depending on the needs in terms of 

capacity and distortion. At each pass a quarter of the image 

pixels are watermarked and a classification process 

conducted so as to identify PHS and DEHS image regions. 

For DEHS regions, a second classification process is 

conducted in order to avoid under/overflows.  

In order to minimize the distortion, we also propose two 

other refinements while preserving the capacity is to not 

watermark pixels for which the estimator bias is too 

important and for which the reference class cannot be 

identified accurately. We thus introduce two more 

constraints to be satisfied by a DEHS watermarkable pixel. 

Pixels with high bias belong to blocks which are highly 

textured. They can be identified through the standard 

deviation of their block of reference (see section II.D). Thus 
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p
k
i,j is watermarked if k

stdB̂ < Tstd, where k

stdB̂ is the standard 

deviation of ˆ k
B and Tstd is a threshold we define in this study 

as the standard deviation mean of all reference blocks. Again, 

the reader will retrieve Tstd and achieve the same 

classification. In the same vein, pixels with a non accurate 

reference class Cr, are pixels for which the predict-error 

neighborhood standard deviation 
k

jstdie , is too high. Thus p
k
i,j 

is modified if 
k

jstdie , < Te where Te corresponds to the mean 

of {
k

jstdie , } in the whole image.  

III. EXPERIMENTS 

A. Image database and measures of performance 

The proposed watermarking method has been tested over 

several test set of medical images issued from three distinct 

image modalities: three volumes of 12 bits encoded 

magnetic resonance images (MRI) with 79, 80 and 99 axial 

slices of 256x256 pixels respectively; three 16 bits encoded 

PET (positron emission tomography) image volumes of 

234, 213 and 212 axial slices of 144x144 pixels respectively; 

three sequences of 8 bits encoded US (ultrasound image) 

images (14 of 480x592 pixels, 9 and 30 of 480x472 pixels 

respectively). We have also considered some well known 

and common natural test images: Lena and Baboon. 

To objectively quantify algorithms’ performances, 

different indicators have been considered: the capacity rate C 

expressed in bpp (bit of message per pixel of image) and, in 

order to quantify the distortion between an image I and its 

watermarked version Iw, the Peak Signal to Noise Ratio:  

 ( )

( ) ( )( )
)

,,

12
(log10

,

1,1,

2

2

10

∑ =
−

−
=

MN

ji w

d

jiIjiI

NM
PSNR

             (5) 

where d corresponds to the image depth, N and M 

correspond to the image dimensions.  

B. Experimental results 

Results are given in Table 1 in terms of capacity and 

distortion depending on ∆, the pixel shifting magnitude, and 

the number of pixel considered for embedding. For medical 

images, results in terms of capacity and distortion 

correspond to the mean per image modality. Compare to our 

previous work in [6], our new scheme allows a watermark 

capacity close to 0.2 bpp with PSNR about 79.06 dB for 

MRI, 105.35 dB for PET and 57.067 dB for US images. Our 

new approach considers the signal specificities; it is not 

limited by the black background which occupies a large 

space in this kind of image.  

The last two rows of the table compare our technique with 

the recent method of Sachnev et al. [7] which actually 

outperforms all other approaches of the literature. Results 

are given for the grayscale Lena and baboon images. As it 

can be seen, our method gives a compromise from 0.04 bpp / 

61.375 dB to 0.15 bpp / 55.72 dB for Lena and 0.0127 bpp / 

63.026 dB to 0.049 bpp / 57.167 dB for Baboon simply by 

watermarking successively each quarter of the image. For 

high PSNR values, our method allows twice the capacities of 

the Sachnev et al. approach. 

IV. CONCLUSION 

In this article, we have proposed a new reversible 

watermarking scheme which originality stands in identifying 

parts of the image that can be watermarked with two distinct 

HS modulations: Pixel Histogram Shifting and Dynamical 

Error Histogram Shifting (DEHS). The later modulation is 

another original contribution of this work. By considering 

the specificity of the signal content, our scheme offers a very 

good compromise in terms of capacity and low distortion for 

both medical images and natural images. However, this 

method is fragile and any modifications will impact the 

watermark. It can serves within applications for verifying the 

image integrity. However, questions about watermark 

robustness are largely open. Up to now, a few methods have 

been proposed. This is one of the upcoming challenges. 
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∆ = 1 

 

 use ¼ of the I  use ½ of the I  use the whole I 

C PSNR C PSNR C PSNR 

MRI 

([6]) 

0.064 84.99 0.13 81.94  0.25 79.06 

(0.011bpp / 74.07dB) 

PET 

([6]) 

0.088 108.16 0.17 105.35 0.32 102.58 

(0.057bpp / 97dB) 

US 

([6]) 

0.043 62.55 0.084 59.77 0.16 57.067 

(0.2bpp / 51.1dB) 

Lena 

([7]) 

0.04 61.375 0.078 58.545 0.15 55.72 

(0.02) (61.42) (0.04) (58.51) (0.09) (55.29) 
Baboon 

([7]) 
0.0127 63.026 0.025 60.077 0.049 57.167 

(0.005) (63.66) (0.01) (60.46) (0.02) (57.11) 

Tab. 1. Capacity and distortion measurements for our approach in 

application to MRI, PET, US, and for Lena and Baboon grayscale 

images. Results in parenthesis correspond to methods [6] or [7].  
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