
 

 

 

Abstract— In reading Computed Tomography (CT) scans 

with potentially malignant lung nodules, radiologists make use 

of high level information (semantic characteristics) in their 

analysis. Computer-Aided Diagnostic Characterization (CADc) 

systems can assist radiologists by offering a “second opinion” - 

predicting these semantic characteristics for lung nodules. In 

this work, we propose a way of predicting the distribution of 

radiologists’ opinions using a multiple-label classification 

algorithm based on belief decision trees using the National 

Cancer Institute (NCI) Lung Image Database Consortium 

(LIDC) dataset, which includes semantic annotations by up to 

four human radiologists for each one of the 914 nodules. 

Furthermore, we evaluate our multiple-label results using a 

novel distance-threshold curve technique - and, measuring the 

area under this curve, obtain 69% performance on the 

validation subset. We conclude that multiple-label classification 

algorithms are an appropriate method of representing the 

diagnoses of multiple radiologists on lung CT scans when 

ground truth is unavailable. 

I. INTRODUCTION 

UNG cancer is the most prevalent cause of cancer-

related deaths in the human population today. Effective 

treatment often relies on early detection of the disease, 

which is done by analyzing suspect computed tomography 

(CT) scans of lungs. Analysis of the size change of 

suspected tumors – known as lung nodules – and the 

inspection of their visual characteristics help diagnose the 

patient.  

When radiologist examines the series of computed 

tomography scans, the aim is to provide a physician with a 

set of recommendations that will help the physician to make 

a correct diagnosis. To improve the usefulness and 

completeness of these recommendations computer-aided 

diagnosis (CAD) systems have been designed. They provide 

a “second opinion” to the radiologist, which may help to 

increase the efficiency of the diagnosis process as well as 

reduce the rate of false positive diagnoses while maintaining 

an acceptably low rate of false negative diagnoses at the 

same time. 

The most current findings in this area support and extend the 

need for creating reference standard data sets that can 

provide the ground truth for computer-aided diagnosis 

systems.  One such dataset is the Lung Image Database 
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Consortium (LIDC) [1] – a diverse and growing collection 

of CT scans analyzed by four radiologists. Each radiologist 

provided a contour for the nodule or nodules present in the 

scan, as well as a set of characteristics for the nodule as a 

whole (cross sections of the same nodule are generally 

present on multiple CT scans). These characteristics are 

lobulation, malignancy, margin, sphericity, spiculation, 

subtlety, and texture.  Each characteristic received a rating 

on a scale from one to five. 

While the LIDC provides a common framework for training 

and evaluating CAD algorithms, there are several challenges 

that the LIDC data presents including the lack of ground 

truth and the variability among multiple observers as there 

was no forced consensus among radiologists when assigning 

ratings for each characteristic (Fig1). Furthermore, the 

number of nodules on which there was agreement among 

radiologists was small.  These challenges presented by the 

LIDC data represent the problems encountered in the 

medical diagnostic process and open new avenues of 

applying non-traditional machine learning approaches to the 

medical imaging decision process.  

One of the approaches for addressing disagreement issues in 

the medical imaging area before training the classification 

model is to artificially force a diagnosis consensus by 

finding the mean or mode of the characteristics as in the 

work by Muramatsu et al. [2]. However, the potential 

drawback of the consensus approach is that the aggregation 

of individual interpretations produces loss of important 

information in some cases.  

In this paper, we take a further step of classifying lung 

nodules by considering distributions of ratings (labels) 

instead of single ratings generated either through consensus 

or creating multiple instances (each one with a single rating) 

per nodule. We propose to consolidate the four ratings‟ 
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Fig. 1.  Example of four different delineations on a slice marked by 

four different radiologists. 
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interpretations available for each nodule (given the four 

radiologists interpreting the nodule) into a probability 

distribution, where each rating („1‟, „2‟…‟5‟) receives a 

probability based on the proportion of radiologists who 

selected that rating. This probability distribution of the 

ratings becomes the multiple-label and is associated with a 

single set of image features calculated for the largest of the 

four outlines provided by the radiologists.  In this way, we 

represent each nodule as a single instance during the training 

while taking full advantage of all the information available 

in the radiologists‟ ratings, instead of discarding the 

variations in the interpretation process. Having the output of 

classification system as a multiple-label will be beneficial 

for the “second opinion” aspect of a CAD process in a sense 

that radiologist will be provided with not only a single class 

decision, but with a probability distribution which can 

provide a radiologist with more insights about the difficulty 

of a certain diagnosis. 

The rest of the paper is organized as follows: Section II 

discusses the related work in the area of multi-class and 

uncertain classification; Section III describes the details of 

our classification and performance evaluation techniques; 

Section IV presents the evaluation results, and Section V 

summarizes our presented work and describes possible 

avenues for future work. 

II. RELATED WORK 

In a classification task, an instance is a case observation that 

has to be assigned a label. A label can be either a class 

membership value or probability of a particular instance 

where a class defines a certain group that the instance can be 

a member of.  In situations where instances are assigned to 

multiple classes, then those classification tasks are divided in 

two categories: multi-label classification and multiple-label 

classification.  

The multi-label classification task is applicable in the 

situations when the instance can be a member of several 

non-mutually exclusive classes simultaneously. The 

examples of such tasks (of video, gene and image 

classification) are described in [3] - [5].  

The multiple-label classification task defined by Jin et al. [6] 

is similar to the multi-label classification task in a sense that 

the instance can be a member of several classes at the same 

time, but differs from it by the fact that only one of these 

class memberships is correct. Situations in which such a 

classification task is applicable usually arise due to the 

presence of multiple observers who do not agree with each 

other. Multiple studies were conducted to determine whether 

the presence of multiple observers might be beneficial for 

solving the classification task. Snow et al [7] examined the 

problem of dealing with noisy labelers and claimed that the 

presence of multiple observers can be beneficial for 

annotation task even when level of expertise of those 

observers is generally low. Sheng et al [8] performed the 

study aimed at solving the similar task, but employed the 

active learning strategies to train the classification model. 

Results have shown the advantage of combining multiple 

noisy labelers over the single labeling technique. Kanefsky 

et al [9] created and tested a system intended for manual 

annotation of craters on images of Mars. After collecting 

annotations from multiple volunteer labelers they were 

combined using weighted clustering technique. Since the 

study was at the preliminary stage, the obtained results were 

mostly visual, not quantitative. Raykar et al [10] examined a 

classification problem at which not only labelers were of 

different quality, but ground truth was unavailable hidden 

from the algorithm and used only for evaluation purposes. 

The performance of created classification model was 

compared to the performance of a model learned on actual 

ground truth and the difference in performance was 

insignificant.  

Bjanger and Denœux [11] proposed to modify a traditional 

decision tree algorithm by defining the impurity measure for 

each node with respect to a class membership probability 

distribution of an instance as opposed to single class 

membership. While Bjanger and Denœux [11] proposed an 

adaptation of decision trees classifier to the multiple-label 

problem for classifying uncertain two-class label instances 

of EEG data (classification approach has shown error rate of 

0.34) , Vannoorenberghe and Denœux [12] extended the 

approach to give it the ability to handle uncertain multiple-

class label instances. They proposed to combine trees 

produced by splitting a multiple-label classification problem 

into multiple two-class classification problems (one vs. rest 

classification approach) and demonstrated the approach in 

the context of classifying data concerning acoustic emission 

testing of pressure vessels. Authors proposed the evaluation 

criterion that allowed them to perform the evaluation on 

instances whose labels were a belief functions rather than 

single ratings. The reported results showed 0.59, 0.6, 0.59 

and 0.57 values for this evaluation criterion, on different 

datasets correspondingly, which demonstrated a slight 

improvement over the classification with non-probabilistic 

labels and suggested that the combination of expert 

information improves the classification results. The output 

of such classifier is another basic belief assignment (BBA) 

that can be evaluated against the original uncertain label 

using various metrics such as simple accuracy as in [13] or 

loss function proposed in [12]. 

Another approach for solving the multiple-label problem 

using artificial neural networks was proposed by Denœux 

[14] and by Quost and Denœux [13] using the Dempster 

Shaefer theory [15]. Their approach consisted in combining 

uncertain output labels produced by multiple weak 

classifiers for identifying different types of waveforms in 

sleep EEG data. The approach proposed by the authors 

demonstrated an error rate of 13.4. For every classification 

case the authors performed minimization of mean squared 

differences between the classifier outputs and target values 

making a decision on whether the instance was classified 

correctly or not.  

In this paper we propose to handle the variability in the 

radiologists‟ interpretation by solving a multiple-label 

classification problem based on Jin et al. [6] approach.  

Furthermore, we propose to use belief decision trees [16] to 

predict class membership probability distribution for each 
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nodule and also introduce an evaluation metric capable of 

assessing the performance of such a probabilistic 

classification algorithm. The same approach that we will 

apply for any of the seven semantic characterizations 

classification problems will be applied for the other six 

characteristics as well. 

III. METHODOLOGY 

A. LIDC Dataset 

The publicly available LIDC database (downloadable 

through the National Cancer Institute‟s Imaging Archive 

web site - http://ncia.nci.nih.gov/) provides the image data, 

the radiologists‟ nodule outlines, and the radiologists‟ 

subjective ratings of nodule characteristics (with respect to 

lobulation, malignancy, margin, sphericity, spiculation, 

subtlety, and texture) for this study. The LIDC database 

currently contains complete thoracic CT studies for 399 

patients acquired over different periods of time and with 

various scanners. Each study can contain several nodules of 

a different size; therefore, there may be a different number 

of slices associated with a particular nodule. Each slice 

associated with a nodule could contain up to 4 different 

outlines of this nodule marked by 4 different radiologists. 

Each radiologist independently rates 7 semantic 

characteristics of a nodule which produces 4 different 

semantic labels associated with it. Ground truth for the 

semantic ratings of lung nodules is not available for LIDC 

dataset, therefore ratings supplied by radiologists have to be 

used for training the classification system and evaluating the 

results. 

For each nodule greater than 5×5 pixels (around 3×3 mm) 

- nodules smaller than this would not have yielded 

meaningful texture data – we calculate a set of 63 two-

dimensional (2D), low-level image features from four 

categories: shape features, texture features, intensity 

features, and size. Although each nodule is present in a 

sequence of slices, in this study we are considering only the 

slice in which the nodule has the largest area with respect to 

the outlines provided by up to four radiologists who 

annotated the corresponding nodule. Therefore, only the 

largest outline is considered for feature extraction as the 

most representative. After completion of the feature 

extraction process, we create a vector representation of every 

nodule which consists of 63 image features and 7 radiologist 

annotations. More details on the feature calculations and the 

rating values for each semantic characteristic are provided in 

[17]. 

B. Belief Decision Trees 

In this paper we chose to adopt the decision tree based 

classification approach proposed by Elouedi et al. [19] that 

is able to handle data instances with uncertain labels. 

Classification is performed in a manner similar to the one of 

regular decision trees. On every node, the instance that is 

currently being classified is redirected to the right or the left 

child of the node depending on the value of the attribute 

corresponding to this node. The process is repeated until the 

instance reaches the leaf node, which has a class 

membership probability distribution or a basic belief 

assignment (BBA) associated with it. This BBA is 

considered to be the newly predicted label of a classified 

instance. The main difference lies in the way a tree is 

constructed. At every node of the tree, starting with the root, 

the algorithm attempts to perform a split based on every 

attribute/feature existing in the dataset. Out of all 

constructed splits it determines the best (the selection 

measure will be defined further) one and uses it for growing 

the tree further. Every node is associated with a BBA that is 

constructed by the average of the BBAs of all training cases 

that reached that node. The newly created node is considered 

to be a leaf if one of the stopping criteria is reached: 1) there 

is only one instance that reached this node; 2) all BBAs of 

the instances which reached the node are equal; 3) all the 

available attributes/features are split; or 4) the gain ratio of 

all possible further splits is less than or equal to 0. 

In order to define a best split, the algorithm performs the 

following steps: 

First, algorithm computes the pignistic probability 

(probability calculated from a belief) of instance Ij for each 

possible class Ci for every instance in the dataset by: 

               
 

         
         

           
       (1) 

Where C is a belief mass that Ci is a member of Θ, Θ is a set 

of all possible classes and           is a probability 

associated with the corresponding belief mass C and 

          is a probability associated with the belief mass of 

instance not being a member of any class from available 

pool of classes. Due to the fact that all BBAs in the LIDC 

dataset are singletons meaning that each radiologist have to 

pick one class and one class only when assigning the rating 

to a nodule, the pignistic probability of instance Ij for class 

Ci is the ratio of observers who assigned the instance to a 

given class to the total number of observers for that instance 

(equation 2). 

              
  

   
 
   

    (2) 

(where λl={0,1,2,3,4} is rater count for every class i rated on 

a scale from 1 to 5) 

Second, the algorithm computes the average pignistic 

probability function          over the set of S instances 

present in the subset that reached the node to get the average 

probability on each class: 

             
 

   
                      (3) 

Third, it computes the entropy of average pignistic 

probabilities in S: 

                                       
 
    (4) 

where n is a number of possible classes. 
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For every attribute/feature, the algorithm collects the subset 

SV
A 

made with the cases having V as a value for the attribute 

A, compute pignistic probability         
   for each v of 

attribute A. Finally algorithm computes          for every 

attribute as: 

          
   

  

   
       

      (5) 

Where   
  is calculated using equation (4). 

To calculate goodness of split, the algorithm computes the 

information gain: 

                              (6) 

and the gain ratio: 

                 
         

               
   (7) 

Where                 is calculated as: 

                 
    

   
     

    

      (8) 

The attribute/feature that produced the largest value of gain 

ratio is used for the split. 

There were several modifications that we made to the 

original algorithm proposed in [16].  While the approach 

described by Elouedi et al [16] assumes a categorical nature 

of the attributes, attributes present in LIDC dataset are 

continuous. We modified the algorithm to work with 

continuous attributes by setting the threshold on attribute 

value that will divide a set of instances into the subset. In 

order to choose an appropriate threshold, we employed the 

approach proposed by Quinlan [18]. The approach extracts a 

separate threshold from every distinct pair of values in the 

sorted set of attribute values and uses described gain ratio 

maximization criteria to determine the most suitable one. 

We also noticed, while examining the produced 

classification model, that the Gain Ratio splitting criteria in 

the  case of the LIDC dataset tends to favor very unbalanced 

splits, assigning a very small ratio of training instances (as 

small as stopping rules allow) to one of the node‟s children 

at every case. As a result the produced trees contained large 

number of terminal nodes, often equal to the number of 

training instances,  and were over fitted. In order to avoid 

this we decided to use information gain instead of gain ratio 

as a splitting criterion. 

As the last change we modified one of the stopping rules 

setting the smallest number of instances that can reach any 

non-terminal node in a tree to 10 and setting the smallest 

number of instances that can reach the terminal node to 5. 

The optimal number of instances that can reach non-terminal 

node was determined empirically as a compromise between 

complexity of the classification model and training dataset 

cross-validation performance. The maximum number of 

instances at terminal node was fixed to the half of number of 

instances at its parent node to avoid the unbalanced final 

splits. This change has also been done to avoid over fitting 

of the classification model. 

C. Performance Evaluation 

When evaluating a classification system that utilizes a 

probability distribution of ratings or classes as an input, and 

outputs a probability distribution of class membership, 

evaluation methods beyond accuracy should be used to 

better capture performance of the system. We propose the 

idea of a distance curve, in a similar vein to a ROC (receiver 

operator characteristic) curve [19], to assess the performance 

of multiple-label classification approach. We were not able 

to construct ROC curve for the results that we obtained since 

the definitions of true positive rate and false positive rate are 

not directly applicable to the multiple-label classification 

task. 

The distance curve is defined as follows: 

Let L be a sequence of instance labels, L= [L1,L2,…Lj…LN] 

where N is the number of instances and each Lj is a discrete 

probability density function over the label set . 

Similarly, let P be a sequence of predicted labels, P = 

[P1,P2,…Pj…PN] where each Pj is  discrete probability 

density function over the label set ε. 

Let D be a normalized distance function defined on the 

instance/prediction pairs, D(Lj,Pj) [0,1].  We define the 

distance-threshold curve as 
              

   

 
,     (9) 

where x, threshold value for the distance, is defined from 0 

to 1, and the [] are Iverson brackets, which equal 1 when the 

statement inside the brackets is true and 0 otherwise.  It can 

be seen that values of the curve itself are between 0 and 1 

and that the curve is monotonically increasing. 

We define the area under the distance-threshold curve 

simply as 

 
              

   

 

 

 
       (10) 

To generate the curve, we varied the thresholds of distance 

between the distributions for the classification to be 

considered “accurate.” For example, if we looked for 

nodules that have a normalized distance of 0, with 0 being a 

threshold value, between the input and output distributions, 

we would find little to none. As we increase the distance we 

find more and more nodules within that threshold. With a 

normalized distance threshold of 1 between distributions, all 

the nodules would be considered correct or accurate. Once 

the curve is generated, the area under the distance threshold 

curve (AuCdt) was used as the metric for comparison. For 

this study, we used the Jeffrey Divergence distance metric 

[20] to generate the D distance function for formula (9), 

since this distance metric proved to be numerically stable, 

symmetric and robust with respect to noise [21]. 
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IV. RESULTS 

The dataset used for training and testing of the belief 

decision trees contained 914 instances (1 instance per 

nodule). The multiple-label of every instance was 

constructed as class membership probability distribution, 

where each class probability was calculated as the ratio of 

radiologists who assigned the nodule to a given class (rating) 

to the total number of radiologists for that nodule. The set of 

attributes for an instance was generated from the largest 

(with respect to the area) outline available for a given 

nodule.  

To build a classification model, we divided the dataset into 

90% for training and testing, and 10% for validation subsets 

in such a way that the nodule distributions of validation 

subsets mimic the nodule distributions of the original dataset 

with respect to radiologist agreement and the number of 

radiologists who rated the nodule. The Belief Decision Tree 

classification model was constructed for each of the seven 

semantic characteristics using 10-fold cross validation on the 

90% of the data; the model was further validated on 10% 

validation subset. The distance-threshold curve (AuCdt) and 

accuracy (ACC) were calculated to evaluate and compare 

the classification model (Table I). Given the definition of 

accuracy stands for deterministic labels, we evaluated it by 

considering the consensus on assigned (majority rating) and 

predicted probabilistic label (maximum probability). 

When analyzing the results, we noticed that belief decision 

trees demonstrated highest performance on those semantic 

characteristics for which a highly dominant rating exists. 

Therefore, in order to determine the impact of a rating 

distribution‟s shape (dominated by a rating or not) on 

classification accuracy, the two subsets of correctly 

classified (CC) and misclassified (MC) instances were 

examined independently.  

TABLE I  

Evaluation of Belief Decision Trees Classification Technique with Respect 

to Distance-threshold Curve (AuCdt) and Accuracy Metrics (ACC) 

 

Training subset (90% 

of instances) 

Testing subset (10% of 

instances) 

   Characteristic AuCdt (%) ACC (%) AuCdt (%) ACC (%) 

Lobulation 79.97 69.62 74.46 58.24 

Malignancy 73.10 61.58 64.16 49.45 

Margin 70.51 61.92 63.72 48.91 

Sphericity 60.28 45.93 63.14 37.36 

Spiculation 82.05 74.33 76.61 71.74 

Subtlety 70.86 60.51 61.67 37.36 

Texture 81.94 81.87 76.87 77.17 

Average 74.10 65.11 68.66 54.32 

 

For the three semantic characteristics with significant 

increase in the performance by using belief decision trees 

(spiculation, lobulation, texture) we noticed that belief 

decision trees accurately predicted the majority of instances 

with dominant rating. A summary of these findings is 

reported in Table II; the analysis is provided on the training 

set given the low number of ratings from each class for the 

testing data. 

An impact of distribution of the ratings on classification 

performance of decision trees is caused by the way the 

classification model provides its final probabilistic decision.   

The instance label is used to calculate the average pignistic 

probability function (average across 5 classes) which is then 

used for calculating the entropy of the set and determining 

the goodness of split for a particular node. Every node in a 

belief decision tree has a probability distribution associated 

with it which is calculated by averaging the probability 

distributions (uncertain labels) of instances that reach that 

node during the training phase. At the classification step, a 

classified instance is assigned the probability distribution of 

a leaf node that it reaches. It is clear that since all predicted 

labels are produced by averaging the subset of assigned 

instance labels and there exists a rating which is highly 

dominant across all 5, there will be fair amount of predicted 

uncertain labels with the given rating also being dominant. 

Due to the way accuracy is assessed for every case (mode 

vs. mode) the model will perform well for instances with 

dominant ratings. 

TABLE II 

Misclassification Rate of Belief Decision Tree Classification Approach on 
Instances with Dominant and Non-dominant Ratings; CCDR Stands for 

Correctly Classified Dominant Ratings and MCDR  for Misclassified 

Dominant Ratings; (similar abbreviations are used for the non-dominant 
abbreviations (CCNDR and MCNDR)) 

% instances per 

characteristic CCDR MCDR  CCNDR MCNDR 

     Lobulation 67.19% 7.05% 10.57% 15.19% 

Spiculation 76.28% 4.38% 4.50% 14.84% 

Texture 68.73% 1.22% 9.25% 20.80% 

 

V. CONCLUSIONS 

In this paper we adapted and evaluated a multiple-label 

belief decision tree classification algorithm. We determined 

that, in certain situations the algorithm demonstrates higher 

performance than in a general scenario. We learned that 

these situations correspond to distributions of ratings that are 

dominant by one rating (unimodal distributions) and 

therefore, it is possible, by examining the data, to make a 

decision whether the use of technique is appropriate.  While 

most of the research results for multiple-label classification 

in the current literature are presented on synthetic data, we 

demonstrated the multiple-label approach using a real 

medical dataset. Furthermore, we evaluated the performance 

using both the standard accuracy measure and the area under 

a distance-threshold curve – the analog of ROC curves for 

probabilistic outputs.  

In terms of future work, we plan to expand this work as 

follows:  first, we will include 3D image features in addition 

to the current 2D features; second, we will look at 

combining radiologists outlines using p-maps approaches 

instead of considering just the largest outline; third, we will 
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investigate the use of other base classifiers as a way to 

improve performance, and lastly, we will look at 

incorporating belief classifiers into various ensemble 

learning techniques to take advantage of their classification 

capabilities. 
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