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Abstract— In this paper, we apply Sparse Logistic Regression
Classifiers to the classification of 69 Alzheimer’s Disease and
60 normal control subjects based on voxel-wise grey mat-
ter volumes derived from structural MRI. Methods such as
standard logistic regression cannot be used in such problems
because of the large number of voxels in comparison to
the number of training subjects. Sparse Logistic Regression
(SLR) addresses this issue by incorporating a sparsity penalty
into the log-likelihood, which effects an automatic feature
selection within the classification framework. We apply two
different formulations of sparse logistic regression and compare
their classification accuracy with that of Penalized Logistic
Regression (PLR) and Maximum uncertainty Linear Discrim-
inant Analysis (MLDA). In the first approach, we use the
original formulation of SLR in which correlated voxels are
forced to have similar weights. In the second approach we
use a spatially regularized formulation, SRSLR, to force the
discriminating vector to be spatially smooth when viewed as an
image. Evaluation of the methods using cross-validation shows
similar classification accuracies for SLR and SRSLR, with both
performing better than PLR and MLDA. In addition, SRSLR
produced classifiers that were spatially smoother than those
produced by SLR, which may better reflect the regional effects
of Alzheimer’s Disease.

I. INTRODUCTION

Alzheimer’s Disease (AD) is the leading form of dementia
worldwide. It has been shown to be associated with reduced
grey matter as measured by MRI over the whole brain [1],
and within specific anatomical regions such as the hippocam-
pus [2], compared to normal controls (NC). Recent interest
in the computational neuroanatomy community has focused
on developing tools for diagnosis of AD using multivariate
pattern classification techniques applied to voxel-wise, rather
than regional or whole brain, measures [3] [4]. Such an
approach can potentially be used to develop novel biomarkers
of AD and improve understanding of the disease process.

Multivariate voxel-wise classification from MRI is chal-
lenging because the number of voxels, ie. features, is typi-
cally many orders of magnitude greater than the number of
available MRI scans, ie. training set size. In such situations,
classifiers are prone to ‘overfit’ to the training data, and
therefore perform poorly on unseen test examples, as a
result of the so-called ‘curse of dimensionality’. Feature
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reduction methods such as principal components analysis [5]
and feature clustering [6] have been used to overcome this
problem, but since these techniques are not fully embedded
into the classification, it is highly likely that relevant features
will be discarded or the new feature space will not be an
appropriate one for classification.

Recent advances in machine learning have addressed these
limitations by embedding feature selection into the classifi-
cation framework by incorporating a sparsity penalty into
the objective function that is optimized by the classifier.
This results in a classifier where most of the coefficients, or
‘weights’, are zero which means that corresponding features
are discarded as irrelevant to the classification problem. This
should not only improve classification accuracy, but also
produce classifiers that are more interpretable. Such methods
have been successfully applied to functional MRI [7][8][9].

In this paper we propose the novel use of sparse logistic
regression classifiers to classify AD from NC using voxel-
wise grey matter volumes. The next section describes the
mathematical framework for sparse logistic regression clas-
sification, while sections III and IV describe the application
of the technique to structural MRI data.

II. LOGISTIC REGRESSION

In binary classification, logistic regression models the
probability that a subject with row feature vector x =
(x1,x2, . . . ,xp) belongs to class y ∈ {0,1} as

P(y = 0∣x) = 1

1+ exβ+β0

P(y = 1∣x) = exβ+β0

1+ exβ+β0

(1)

where β = (β1, . . . ,βp) and β0 are the ‘weight’ vector and
intercept respectively. Given a training set X= (x1; . . . ;xn) of
size n and class memberships y = yi, β and β0 are estimated
by maximizing the log-likelihood

L(β ,β0) =
n

∑
i=1

yi(xiβ +β0)− log(1+ exiβ+β0) (2)

The estimation of β and β0 is performed by differentiat-
ing (2) to give the gradient of the log-likelihood:

g(β ,β0) = XT (y−p) (3)

where p = (p1, . . . pn), pi = P(yi = 1∣x), and in which we
have added a column of ones to X to account for the intercept
β0. The ‘score equations’ are obtained by setting g = 0, and
are solved using iterative reweighted least squares (IRLS) to
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give the estimates for β and β0 [10]. A test example is then
classified by evaluating the probabilities of class membership
in (1) and assigning to the more probable class. Logistic
regression cannot be used when there is a large number of
features in relation to the number of training samples, as the
coefficients of β diverge to ±∞ to give a perfect fit to the
training data but poor predictive performance with unseen
test data. In our application, the number of features greatly
outnumbers the number of training samples, and so standard
logistic regression cannot be used.

A. Sparse Logistic Regression

In sparse logistic regression (SLR), a prior on the weight
vector is included which penalizes the log-likelihood and
regularizes the estimation of β . The penalized log-likelihood
takes the form

LP(β ,β0) = L(β ,β0)−λ1 ∥β∥1 −λ2 ∥β∥2
2 (4)

where L(β ,β0) is as defined in (2). The penalty term,
which incorporates both an L1 and L2 penalty on the weight
vector β , is the ‘elastic net’ penalty which has recently
been applied to both regression and classification problems
[11]. The effect of the L1 penalty is to impose sparseness
on β by shrinking its coefficients towards zero, with some
weights exactly equal to zero depending on the value of the
tuning parameter λ1. Including this penalty therefore means
that a kind of simultaneous continuous feature selection
is performed within the classification framework. The L2

penalty has the effect of regularizing the estimation of β ,
and tends to make correlated features have similar weights.
Letting λ1 = 0, ie. removing the sparsity penalty but keeping
the L2 penalty, gives the Penalized Logistic Regression
(PLR) criterion which has been used in genetics classification
tasks [12].

Classical methods for optimization such as IRLS cannot
be used to maximize (4) because the L1 term causes the
penalized log-likelihood to be non-differentiable when any
of the coefficients of β are equal to zero. However, the
penalized log-likelihood is still a concave function and can
be solved using a number of different algorithms [13] [14].
We adopt the bound optimization approach of [14] [7], in
which (4) is optimized by iteratively maximizing a surrogate
function Q at each iteration t

ŵ(t+1) = argmax
w

Q(w∣ŵ(t)) (5)

where w = (β ,β0). For SLR, the surrogate function is [7]

Q(w∣ŵ(t)) =wT (g(ŵ(t))−Bŵ(t))+
1
2

wT Bw

−λ1 ∥β∥1 −λ2 ∥β∥2
2

(6)

where g(w) is the gradient of the log-likelihood in (3), and
B is the matrix

B =−0.25
n

∑
i=1

xT
i xi (7)

where each xi is a row in the augmented data matrix X in
(3). Instead of optimizing (6), it is maximised with respect

to just one of its components at each iteration t using the
update equations

ŵ(t+1)
k =

⎧⎨
⎩

s(−Bk,kŵ(t)
k +gk(ŵ

(t)),λ1)

2λ2−Bk,k
if k < p+1

−gp+1(ŵ
(t))+Bp+1,p+1ŵ(t)

p+1
Bp+1,p+1

if k = p+1
(8)

where the updates of the weight vector components
w1, . . . ,wp and intercept component wp+1 are different since
the intercept is not penalized in (4). The function s in (8) is
the soft-thresholding operator:

s(x,y) = sign(x)max{0, ∣x∣− y} (9)

B. Spatially Regularized Sparse Logistic Regression

Sparse logistic regression tends to give correlated features
similar weights in the estimated weight vector β due to the L2

penalty in (4). However, since in our application the training
data, and hence β are images, we can use a penalty that
enforces spatial smoothness on β to regularize the solution.
This is achieved by maximizing the following penalized log-
likelihood function:

LPΩ(β ,β0) = L(β ,β0)−λ1 ∥β∥1 −λ2β T Ωβ (10)

where Ω is chosen so that β T Ωβ is a discrete approximation
to the integral of the 3D Lapacian of β , when viewed as an
image, over a region of interest R.

β T Ωβ ≈
∫∫∫

R
(βxx +βyy +βzz)

2 (11)

Note that if we let Ω = I, then we have the SLR penalized
log-likelihood in (4). The surrogate function for maximising
(10) now becomes

Q(w∣ŵ(t)) =wT (g(ŵ(t))−Bŵ(t))+
1
2

wT Bw

−λ1 ∥β∥1 −λ2β T Ωβ
(12)

Differentiating (12) with respect to a component of w gives
the following update equation for the weights

ŵ(t+1)
k =

s(αkŵ(t)
k −2λ2Ωk;ŵ

(t)
1:p +gk(ŵ(t)),λ1)

αk
(13)

where αk = 2λ2Ωk,k −Bk,k, Ωk; is the kth row of Ω, and ŵ(t)
1:p

refers to the weight-only components of ŵ(t). The update
equation for the intercept wp+1 is the same as in (8). We
refer to this formulation of SLR as Spatially Regularized
Sparse Logistic Regression (SRSLR).

III. APPLICATION TO CLASSIFICATION OF ALZHEIMER’S

DISEASE

A. Materials

We applied SLR and SRSLR to the classification of AD
using structural MRI of the brain. 75 AD and 65 NC subjects
were recruited at the Memory Clinic, University Hospital
(USB), Basel, Switzerland. Patients were diagnosed as prob-
able/possible AD if they met the criteria defined by NINCDS
and ADRDA [15]. MRI data acquisition was performed on a
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3 T Siemens Allegra head-only MRI system (Siemens, Erlan-
gen, Germany) at the USB. High-resolution structural images
(FOV = 256x256mm, voxel size = 1.1x1.1x1.1mm, plane:
sagittal) were acquired using a T1-weighted magnetization-
prepared rapid gradient-echo (MPRAGE) sequence (TR =
2150 ms, TI = 1000 ms, TE = 3,49 ms, TA = 7 min, flip
angle = 7). All subsequent image analysis was performed
at the GlaxoSmithKline Clinical Imaging Centre, London,
United Kingdom.

B. Preprocessing

The T1-weighted images were pre-processed using SPM8
software [16]. Firstly, all native images were segmented
into grey matter (GM) and white matter (WM) [17]. Of
these images, 6 AD and 5 NC were excluded from the
rest of the analysis due to large amounts of mistakenly
segmented dura in their native GM segmentations. The GM
and WM segmentations were then non-rigidly aligned to
an intensity average template using DARTEL [18], and the
aligned GM segmentations were then affine transformed into
MNI space. Volume preservation was used throughout so that
the resulting images have the same volume of GM as the
native segmentations. Finally, the GM images were corrected
for volume differences due to head size using the affine
part of the native-to-MNI space mapping determined during
segmentation.

The images were then smoothed with an isotropic Gaus-
sian 1mm FWHM kernel, giving the training and test data
for the classifier. We also produced a corresponding set of
images smoothed with an isotropic Gaussian 8mm FWHM
kernel to which we applied a GM masking threshold of 0.1
to exclude voxels which were likely not to be GM. Finally,
we took the corresponding voxels in the 1mm-smoothed
images and standardized the GM at each of these voxels
to have zero mean and unit variance over the set of subjects,
as is commonly performed with penalized methods. The
standardized GM images were then used as input features
in the classifiers.

C. Evaluation of Classification Performance

We used 10-fold cross-validation to evaluate the perfor-
mance of the classifiers on the 129 subjects. This requires
that we randomly split the training set into 10 folds and
predict each fold in turn after training on the remaining 9
folds. The sensitivity (proportion of AD subjects correctly
predicted), specificity (proportion of NC subjects correctly
predicted), and classification accuracy (proportion of all
subjects correctly predicted) were then calculated for each
fold, and the mean and standard errors of these measures
across folds was determined.

Since SLR and SRSLR both require two tuning param-
eters, λ1 and λ2, we estimated the optimum values using
nested cross validation, ie., for each test fold the remaining
9 training folds were further divided into 5 inner folds, over
which cross validation was used to determine the best choice
of the parameters.

TABLE I

CLASSIFIER PERFORMANCE FOR CLASSIFICATION OF AD

Classifier Sensitivity Specificity Accuracy
SLR 90.77±3.67% 80.26±3.93% 85.26±1.39%
SRSLR 90.35±3.73% 80.26±3.93% 85.26±1.81%
PLR 85.85±3.67% 79.85±4.88% 82.95±2.23%
MLDA 85.10±4.38% 79.85±4.88% 82.95±2.23%

We used PLR as described in section II-A and Maximum
uncertainty Discriminant Analysis (MLDA) [19] as com-
parators with the SLR/SRSLR approaches described. Since
PLR is equivalent to SLR without the sparsity penalty, this
enables a comparison of SLR/SRSLR with their ‘non-sparse’
equivalent, so that the effect of the sparsity penalty, both
on feature extraction and on classifier performance can be
assessed. The single tuning parameter for PLR was estimated
using nested cross validation as for SLR/SRSLR. MLDA is
similar to Gaussian Linear Discriminant Analysis, but uses
an entropy-based approach for stabilizing the estimation of
the pooled covariance matrix and does not involve any tuning
parameters unlike other regularized LDA approaches. It has
been shown to give comparable accuracy to a linear support
vector machine in predicting mental state from FMRI [20].

IV. RESULTS

Table I summarizes the performance of SLR, SRSLR, PLR
and MLDA across the 10 folds. SLR and SRSLR perform
similarly well, with both giving better overall accuracies than
PLR and MLDA. In particular, the sensitivities of both SLR
and SRSLR for detection of AD subjects are 5% greater
than that of the other approaches. The improvements with
SLR/SRSLR could be as a result of the feature selection
inherent to these methods, which seeks to eliminate noisy
variables that harm classifier performance.

We can also see the implications of feature selection
for classifier interpretability in Fig. 1, in which we show
axial and sagittal views of the weight images estimated
for the fourth fold for each classifier, overlaid on the MNI
structural brain atlas. The crosshairs are located within the
left hippocampus. Negative weights, shown in ‘hot’ colours,
indicate reduced grey matter in AD subjects compared to NC
subjects, while ‘cool’ colours indicate increased grey matter.
We can see that both SLR and SRSLR have extracted a small
percentage of the ≈ 2×105 voxels fed into the classifier, with
negative weights found in clinically relevant regions for AD
such as the left hippocampus and left amygdala [2]. The
extraction of these regions implies that the feature selection
component of SLR/SRSLR is giving physiologically plausi-
ble results while simultaneously giving a good classification
performance. In comparison, both PLR and MLDA, since
they cannot perform feature selection, produce weight images
with non-zero values at every voxel. Such classifiers require
arbitrary post-processing eg., thresholding, before voxels can
be discarded as unimportant for distinguishing between AD
and NC subjects. As expected, the weight images produced
by SRSLR were in general smoother than that produced by
SLR, as can be seen in Fig. 1. The smoother images may be
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Fig. 1. This figure shows the weight images produced for the fourth fold
using SLR, SRSLR, PLR and MLDA. Each of the weight images has been
normalized to length 1, and weight values at each voxel are indicated by the
colour shown. Both SLR (1655 non-zero weights) and SRSLR (3724 non-
zero weights) give sparse weight vectors with negative values, indicating
reduced grey matter volume, in clinically relevant regions for AD. PLR
and MLDA assign non-zero weights to all 197150 voxels and are less
interpretable.

more physiologically plausible, since they better reflect the
regional effects of Alzheimer’s Disease.

V. CONCLUSIONS

We have applied sparse logistic regression and spatially
regularized sparse logistic regression to classify AD and NC
subjects from high-resolution structural MRI. Both methods
were able to automatically select clinically relevant regions
for AD while simultaneously performing the classification
with better accuracies than Penalized Logistic Regression
and Maximum uncertainty Linear Discriminant Analysis.
The incorporation of a smoothing penalty in Spatially Reg-
ularized Sparse Logistic Regression gave smoother weight

images than Sparse Logistic Regression although the accura-
cies of both methods were similar. In the future, we intend to
apply these methods to different classification problems such
as distinguishing between MCI (Mild Cognitive Impairment)
and NC subjects from structural MRI.
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