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Abstract— Liver biopsy remains the gold standard in 

monitoring progression of liver fibrosis associated with an 

abnormal increase in collagen. Descriptive scoring systems are 

still being widely used to grade biopsy samples. In this study, we 

propose a new set of features  by clustering collagen fibers into 

three groups first based on their localization and connectivity 

properties, and then by extracting morphological features of 

collagen fibers. The new feature set is compared to the earlier 

features used in classification of liver fibrosis, which were based 

on the total amount of collagen fibers. Our results show that 

new features lead to more accurate grading of liver fibrosis.  

I. INTRODUCTION 

iver fibrosis is a result of a wound healing process that 

accumulates extracellular matrix (ECM) proteins such as 

collagen [1]. Liver biopsy remains the gold standard in 

monitoring the progression of fibrosis in which a small 

sample of tissue is removed with a needle, stained, and 

examined under a microscope, and then graded based on 

descriptive or semi-quantitative scores by trained 

pathologists. However, pathological features used in these 

systems do not have clear definitions and are somehow 

ambiguous, which makes the grading and staging scores 

subjective. Therefore, inter- and intra- observer variations can 

be as high as 35% and it is difficult to obtain highly 

reproducible results from these systems [2].    

To exclude observer discrepancies, several studies have 

reported building automated image analyses systems to grade 

liver fibrosis by using the features extracted from images [3]. 

Most of these systems measure the amount of collagen as the 

only measurement to grade and stage fibrosis. Our previous 

work showed how better accuracy of grading is achieved by 

using both morphological features of the collagen fibers and 
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the amount of collagen [4]. However, different pathologies 

can result in different morphologies of collagen distribution 

as liver damage progresses. Collagen deposition often starts 

around the portal region in early stages and eventually 

connects to form nodules in advanced fibrosis, resulting in 

liver cirrhosis. As a result, the changes of collagen amount 

and morphologies are not the same for all the collagen fibers 

in the sample along the fibrosis progression.  

Other pathological features such as collagen architecture 

change play a more important role in grading and staging 

fibrosis [5], which leads to the need for computer-aided 

systems with more measurements than collagen amount only. 

To address this problem, we clustered collagen fibers into 

three groups based on their connectivity properties and 

location before extracting features of collagen fibers in order 

to represent collagen morphology changes more accurately. 

The performance of grading with the new features is 

compared with those achieved with features extracted from 

total collagen fibers and previously used features. The results 

suggest that combined features from different collagen 

groups can lead to more accurate scoring of liver fibrosis. 

II. METHODS 

The proposed automated scoring system consists of three 

major steps as shown in Fig 1. First, collagen fibers are 

clustered into three groups according to their location and 

connectivity properties. Second, the major axis of each 

collagen fiber is identified and the morphological features of 

collagen fibers are quantified for each collagen group. 

Finally, the best feature set is selected from all the features 

and is used to train a classifier for scoring.  
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Fig. 1 Illustration of the proposed computer-aided scoring 

system for liver fibrosis. 

A. Collagen Segmentation 

Liver slices were scanned by second harmonic generation 

(SHG) microscopy, which is a non-linear optical process
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specific for imaging fibrillar collagens without the need of 

staining [6]. SHG images were first segmented into collagen 

and background by using a segmentation algorithm based on 

Gaussian mixture models [7]. It was assumed that the 

intensity of pixels in the SHG image can be modeled as the 

mixture of two Gaussian distributions, one representing 

collagen area with strong SHG signals and the other 

representing the background. The segmentation results were 

compared with those generated from other segmentation 

methods such as global thresholding and clustering methods 

in our previous study, which illustrated a more accurate 

quantification of fibrosis progression by using a segmentation 

algorithm based on Gaussian mixture models.  

B. Identification of collagen around veins 

Collagen disperses differently in different locations by 

starting around veins and tracts and eventually connecting 

together. Therefore, it is important to identify those collagen 

fibers at different locations such as those around the veins and 

tracts.  

The veins were first segmented from an image generated 

by two-photon excitation microscopy (TPEF) for the same 

region of SHG image. Since the TPEF image records the 

auto-fluorescence signals of the tissue, the vein areas were 

empty spaces with low auto-fluorescence signal. The pixels 

were classified into three groups based on intensity by 

K-means unsupervised clustering. The group of pixels with 

the lowest average pixel intensity was recognized as the veins 

and tracts area, while the other two groups refer to damaged 

cells area and healthy hepatocytes area.   

Let : {0,1}f 
 
denotes the collagen image after 

segmentation where (z) = 1f when pixel ( , )z x y  is a 

collagen pixel, and ( ) = 0f z otherwise. C denotes the set of 

collagen pixels where ( ) 1,f z z C  .  

For each collagen pixel, we proposed a normalized 

distance   to reflect how far it is from its nearest vein space:  

min ( , )
,

( , )

b B
d z b

z C
d z c

  

  
where ( , )d z c is the Euclidean distance between the collagen 

pixel z and the center of mass c of the nearest vein space, 

and ( , )d z b is the Euclidean distance between the collagen 

pixel z and the boundary point b which belongs to the set of 

all boundary points B of the nearest vein space, see Fig 2(a). 

The normalized distance   of a collagen pixel which is close 

to a vein will be close to zero whereas it will be near to one for 

a collagen pixel far from the veins. Fig 2(b) illustrates the 

histogram of   from Fig 2(a), and two peaks can be 

observed.  Collagen pixels are then divided into two groups 

according to   by the Otsu method [8]. The group of 

collagen pixels with value of  close to zero is identified as 

collagen around portal tracts and central veins. The rest of the 

collagen pixels are recognized as collagen between portal 

tracts and central veins.  

 

 
Fig 2. The parameters used to calculate normalized distance 

are defined in (a), where z is a collagen pixel and c is the 

center of mass of the nearest vein space. Collagen pixels are 

shown in green and vein space is shown in blue.  The 

histogram of normalized distance from (a) is presented in (b), 

and two peaks can be observed. The red arrow points to the 

threshold generated by the Otsu method.  

C. Separation of aggregated and distributed collagen 

Collagens between portal tracts and central veins are 

further grouped into aggregated collagen and distributed 

collagen. If a collagen fiber links to other fibers, it has more 

than one cross-link and is classified as aggregated collagen. 

Distributed collagens are those collagen fibers with no 

cross-links with others.  

To identify the cross-links of each fiber and to further 

extract morphological features, a fiber network extraction 

algorithm [9] was performed on the binary image of the 

segmented collagen to track the skeleton of each collagen 

fiber. The principle of the algorithm is to calculate the 

minimal distance from a collagen pixel to a background pixel 

and to trace along the maximal ridges of the distance function. 

The algorithm is briefly described here. 

For a collagen pixel z C , we define its neighbors ( )rN z

in a searching box with radius r and ( )rB z on the boundary 

of a searching box with radius r as below: 

( ) { : ; }rN z v z v r v    , 

( ) { : ; }rB z v z v r v    . 

Firstly, nucleation points  of each fiber are located as the 

starting points for fiber extending and tracking in the 

following steps. To identify nucleation points, the distance 

transform is first computed for all collagen pixels given by: 

min ( ) min ,
v C

d z z v z C


   . 

The nucleation points  are then defined as the global 

maximum points in a neighborhood of the distance function: 

min 1 min
( )

{ : ( ) max { , ( )}, }
rv N z

z d z d v z C


     

where 
1  is a threshold parameter and is set to 1.5 in the 

experiment.  

Secondly, starting from each nucleation point, fibers were 

traced through a set of local maxima points until the end of 
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the fiber or another nucleation point was reached. Given a 

nucleation point z , its local maxima points are given by: 

min
1

( ) min 2 min
( )

{ : ( ), ( ) max{ , ( )}, }d z
b B v

LMP v v B z d v d b z


   

where 
2 is a threshold parameter and is set to 0.2.  

From each nucleation point, the fiber is extended by adding 

its local maxima points to the list. For each of these local 

maxima points, its local maxima points are calculated by the 

same equation described and added to the current fiber so that 

the fiber is extended further. The extension stops when there 

is no local maxima point found or another nucleation is found 

in the neighborhood of current point.  

Finally, those fibers shorter than a certain threshold are 

recognized as danglers and will be removed. Moreover, if the 

distance between two fiber ends are smaller than a threshold 

and the difference of the orientation of these two fibers are 

smaller than a threshold as well, these two fibers are linked to 

form a single fiber.  

Cross-link points are defined as those points belonging to 

more than one fiber. Those collagen fibers having no 

cross-link points were classified as distributed collagen, 

which refers to fine collagen fibers distributed in sinusoidal 

regions. The rest of the collagen fibers containing one or more 

cross-link points were aggregated collagen. 
 

Table 1. Connectivity Property and Location of Three 

Collagen Groups. 

 

FEATURE SET SYMBOL 
CROSS-

LINKS 
LOCATION 

TOTAL COLLAGEN FT   

VEIN COLLAGEN FN >=1 Around veins 

AGGREGATED COLLAGEN FA >=1 Between veins 

DISTRIBUTED COLLAGEN FD =0 Everywhere 

D. Collagen classification and feature extraction 

The collagens are classified into vein collagen, aggregated 

and distributed collagen according to the location identified 

in section B and number of cross-links extracted as described 

in section C. The connectivity property and location of each 

collagen group are summarized in Table 1. The clustering 

results for a sample image are shown in Fig 3, whereas vein 

collagen, aggregated collagen and distributed collagen are 

coded in blue, green and red colors.  

Eight morphological features were extracted for total 

collagen fibers as well as for vein collagen and aggregated 

collagen: collagen amount, fiber number per mm
2
, average 

fiber length, average fiber width, average curvature, average 

coordination number, average cross-link density, and average 

cross-link space, based on collagen mask after segmentation 

and major axis extracted from each collagen fiber. Since 

distributed collagen fibers have no cross-link points, only six 

features were extracted by excluding cross-link density and 

cross-link space. 

III. EXPERIMENTAL RESULTS 

All the liver tissue samples in this study were extracted 

from bile duct ligated rats. Bile duct ligation (BDL) of rats 

will generate a wound in the liver and then lead to fibrosis. A 

total of 15 rats were ligated and sacrificed at intervals of 2, 4 

and 6 weeks (n = 5 per week). 5 control rats were also 

sacrificed at week 0. A tissue slice with 50um thickness is 

sliced from each liver and a total of four images (4068 x 4095 

pixels, ~ 4.1 x 4.1 mm) were scanned for each slice by SHG 

microscopy. Another tissue specimen with 4um thickness is 

sliced from each liver, stained, imaged by light microscope, 

and scored by a pathologist. The score is then used as the 

ground-truth of fibrosis stage of each liver tissue to train and 

test the performance of the scoring system with proposed 

feature sets. 

 

 
 

Fig. 3 Clustering of collagen from one healthy and one late 

stage fibrosis liver sample. (a) SHG/TPEF image of a healthy 

sample. (b) Segmented collagen fibers of (a). (c) Collagen 

clusters of (b), normal, aggregated and distributed collagens 

are presented in blue, green and red respectively. (d) 

SHG/TPEF image of a late stage sample. (e) Segmented 

collagen of (d). (e) Collagen clusters of (e). 

 

The bootstrap method was used to determine significance 

of the performance difference between the feature sets. The 

dataset used in the experiment contained 129 images. One 

thousand bootstrap samples were generated by sampling the 

images with replacement, which means that each new set of 

sampled images contained the same number of images as the 

original set. For each set, feature selection based on minimum 

redundancy and maximum relevancy (MRMR) criteria [10] 

was performed to rank the features and 5-fold 

cross-validation using a one-against-one multi-class support 

vector machine classifier was performed to decide the 

number of selected features according to weighted cost which 

is the weighted summation of wrongly predicted samples.  

The classification results indicated that, by combining 

features from vein collagen, aggregated collagen and 

distributed collagen with features from the total amount of 

collagen, better scoring performance can be achieved. The 
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feature set FT contains eight features extracted from total 

amount of collagen whereas the best performance of the 

system is accomplished when the top five ranked features are 

selected. By adding features from vein collagen, aggregated 

collagen and distributed collagen to FT, the new feature set 

consists of thirty features and is able to improve the system 

performance significantly since the average weighted cost 

decreased about 25% from 20.45 to 14.9 and the average 

scoring accuracy increased by 5%, while top eight ranked 

features are selected and used, see Table 2.  

 

Table 2. Feature selection results of the scoring system using 

the combination of features.  

 

 

With the combination of features from different collagen 

groups, the sensitivity and specificity of the scoring system 

are listed in Table 3. Comparing to the sensitivity and 

specificity using the total collagen feature set only, the 

improvements of sensitivity and specificity are observed for 

most of the stages except stage 1. Because the number of 

images of stage 1 group is limited and is much less than the 

numbers of other groups, this unbalanced dataset could result 

in the big variance of the results of stage 1. Overall, while 

good sensitivity and specificity are achieved for early and late 

stages, the system also performs well for separating mid 

stages using the combination of features from different 

collagen groups which again indicates the importance of 

introducing the new features from different collagen groups.  
 

Table 3. Sensitivity and specificity of the scoring system 

using the combination of  features from different collagen 

groups, and using total collagen feature set only.   

 

IV. CONCLUSION 

In this study, we have demonstrated a new set of collagen 

features for automated scoring of liver fibrosis. The collagen 

fibers are grouped into three classes based on their connecting 

properties and location first and morphological features are 

extracted for different collagen groups. We suggested that the 

combination of collagen features of different groups with 

total collagen features can lead to more accurate scoring of 

liver fibrosis. This is motivated by the pathological 

knowledge that different pathologies can result in different 

morphologies of collagen distribution as liver damage 

progresses, which makes the usage of total collagen features 

only not accurate enough to monitor fibrosis progression. Our 

suggestion is supported by the statistical analysis results. The 

combination feature sets with collagen features of all three 

clusters performed significantly better than the total collagen 

feature set based on the comparisons of classification 

accuracy and sensitivity using a multi-class SVM. This is due 

to the more accurate representation of collagen morphology 

changes by grouping collagen fibers into different classes. 

Further study on different animal models and human samples 

will be conducted to demonstrate the value of using feature 

sets of different collagen clusters. Moreover, although images 

used in our study are from SHG microscopy, all the image 

analysis and feature extraction procedures are applied on 

binary images after collagen segmentation. So these methods 

can be applied to stained samples directly, while the only 

difference is that the collagen segmentation algorithm should 

be altered for stained samples. 
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FEATURE 

SET 
NO. OF 

FEATURES 

NO. OF 

SELECTED 

FEATURES 

AVERAGE 

WEIGHTED 

COST 

AVERAGE 

ACCURACY 

FT 8 5 20.45±6.67 85.39±0.04% 

FT+FN+ 

FA+FD 
30 8 14.96±4.62 89.26±0.03% 

STAGE 0 1 2 3 4 AVERAGE 

FT       

SENSITIVITY 
93.7±

5.2% 

86.4± 

17.2% 

74.3± 

10.4% 

85.2±

7.4% 

94.5± 

5.3% 
86.8±4.8% 

SPECIFICITY 
98.4±

1.4% 

98.7± 

1.2% 

92.6± 

3.3% 

93.6±

3.0% 

99.1± 

0.9% 
96.5±1.1% 

FT+N+A+D       

SENSITIVITY 
96.1±

4.6% 

81.5± 

20.1% 

83.9± 

8.2% 

91.5±

5.1% 

97.8± 

3.9% 
90.2±4.4% 

SPECIFICITY 
98.9±

1.1% 

98.5± 

1.2% 

95.7± 

2.3% 

97.1±

1.9% 

99.1± 

0.9% 
97.9±0.7% 
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