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Abstract— Surgical simulation requires to have an operating
scenario as similar as possible to the real conditions that the
surgeon is going to face. Not only visual and geometric patient
properties are needed to be reproduced, but also physical and
biomechanical properties are theoretically required.

In this paper a physically based patient specific simulator
for solid organs is described, recalling the underlying theory
and providing simulation results and comparisons.

The main biomechanical parameters (Young’s modulus and
density) have been integrated in a Mass-Spring-Damper model
(MSDm) based on a tetrahedral structured network. The
proposed algorithms allow the automatic setting of node mass
and spring stiffness, while the damping coefficient have been
modeled using the Rayleigh approach.

Moreover, the method automatically detects the organ exter-
nal layer, allowing the usage of both the surface and internal
Young’s moduli: for the capsule (or stroma) and for the internal
part (or parenchyma). Finally the model can be manually tuned
to represent lesions with specific biomechanical properties.

The method has beed tested with various material samples.
The results have shown a good visual realism ensuring the
performance required by an interactive simulation.

I. INTRODUCTION

The need to train young surgeons both increasing their
skills in performing practises and preserving patients se-
curity, encouraged the development of virtual simulators
hopefully able to give realistic haptic and visual feedback.

A surgical simulator is a software application that takes
inputs from surgical tool’s shaped virtual interfaces and, run-
ning a physics engine on a virtual model, returns on screen
a visual scenario of the deformed organs and optionally a
haptic force feedback related to the user interactions.

A physics engine is a coded set of physical laws and meth-
ods (i.e.: gravity and Hooke’s law) that applies on a virtual
model to confer a realistic behaviour. This model of the organ
is not just a 3D surface mesh, it is a physical representation in
which geometry and topology of the primitive elements (i.e.:
nodes and links) combined with physical and mechanical
properties (i.e.: mass, stiffness) reproduce as faithfully as
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possible the shape and behaviour of the reference target
(Fig. 1).

(a) (b)

Fig. 1. Virtual models of a human liver: (a) shows the surface 3D model
extracted from a medical dataset while (b) displays an example of a dense
spring network model for real time biomechanical simulation.

In the last years two popular kinds of physical models
has been proposed: Mass Spring Damper models (hereafter
MSDm) and Finite Element Models (FEM).

FEM models lie in applying finite elements numerical
techniques on geometrically simple shapes (e.g.: cubes,
tetrahedra, exahedra etc.) involve physics engines based on
difference equations of continuum mechanics theory; they
are very realistic, particularly in their nonlinear formulation,
but their computational requirements make themselves tough
to be applied for real time virtual simulation [5].

On the contrary, MSDm are computationally inexpensive,
but there is not a straightforward connection with material
mechanics. Moreover, often the computation of the exact
displacement is not required, but it is enough a plausible
behaviour of the tissue’s movement. Since the formulas that
rule these models are trivial, the most challenging issue is
to define a method to map the material properties into the
MSDm coefficients [6].

Regarding MSDm geometry and topology, some efforts
have been spent on cubic elements [19][1] but tetrahedral
filling is by far the most popular meshing technique [6][16],
as long as it is easily scalable and able to provide a good
surface modelling limiting the number of elements [15].

One of the most prolific [24][16][12][19] works using
triangular based shapes is given by Van Gelder [23]: in
this work it is explained how to map biomechanical pa-
rameters into spring coefficients for 2D membranes, and a
heuristical extension to tetrahedra is also provided. Few years
later Lloyd [12] extended this work for tetrahedral meshes,
proposing a theoretical derivation obtained minimizing the
squared difference between FEM and springs network stiff-
ness matrix’s elements.

The purpose of our work is the integration of biomechani-
cal parameters in MSDm physics models in order to enhance
the accuracy of the simulation for interactive virtual surgery.
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The virtual deformable model used in this paper is based
on a MSDm with a tetrahedral structure; its vertices are
called nodes, on which masses are applied, and its edges
are called links, on which linear springs are applied.

During the simulation loop the physics engine computes
the forces to be applied on all the nodes. These forces are
generated both by internal springs and by external sources
(user interactions, gravity etc.). Then, using the Explicit Eu-
ler Integration, accelerations and velocities can be computed
and used to determine the next positions and velocities of
the nodes. Finally, once updated the deformable model, the
simulation loop can be reiterated.

II. PARAMETERS IDENTIFICATION

If we consider a MSDm defined by n nodes, at each
timestep of the simulation loop we can define the displace-
ment vector u> = [u>1 , . . . ,u

>
n ] where u>i = [uix, uiy, uiz]

is the displacement of the node i at the current timestep in
respect of its initial position.

Therefore, we can derive the force induced by the dis-
placement vector u applying the first cardinal equation of
dynamics:

M ü = Du̇+Ku+ fext (1)

where M , D, K are 3n×3n square matrices respectively
defining mass, damping and stiffness coefficients; fext is a 3n
column vector, defining external forces applied to the nodes.

During each iteration, for each node i of the physics
model, its velocity u̇i and displacement ui are known from
the previous integration phase; so, the three contributions
of forces (damping, elastic, and external) in (1) can be
computed and summed. Then, it is possible to proceed with
the Explicit Euler Integration phase: obtaining the node
acceleration üi dividing this sum by the node mass mi

(see II-A). The resulting node acceleration will be used in
the next iteration to compute both velocity and displacement
of the node.

The virtual model is fully defined by its masses, springs,
and dampers coefficients: therefore a biomechanical charac-
terization needs arise from the identification of these prop-
erties by analyzing the target dense organ to be represented.

A. Nodes Mass Parametrization

The identification of the mass matrix M elements in (1)
is not immediately related to the masses applied to nodes.
In its most general formulation is positive definite, squared,
and dense as it comes from the hessian of kinetic energy
expressed using shape functions [7]. The off-diagonal terms
help to preserve the linear and angular momentum and give
inertial contributes not depending on the considered node.

A widely used approach (mass lumping) is to consider only
the diagonal terms, corresponding to the 3D components of
each node [6]. Lumping allows a intuitive physical associ-
ation: applying a mass to each node. For the single node,
the three mass components were considered equals (i.e.: the
inertial contribute is the same in all directions); so in this

case the node mass mi to be determined is a simple scalar
value.

If the material density ρ is known, the node mass mi can
be computed considering the node i surrounding volume,
so the problem rephrase in defining a volumetric region
belonging to each node. Barycentric and Voronoi volume
splitting are two common procedures to establish this asso-
ciation; they divide the volume in a different way but both
are based on the idea of giving a volumetric contribution
to each node considering the volume defined by the set of
incident tetrahedra on that node. Hence, the node mass mi

derives from the sum of the mass contributions calculated
for each tetrahedron incident on the node i.

1) The barycentric mass-lumping: The barycentric sub-
division scheme [24][16] splits each tetrahedron into four
isovolumes defined by the midlines, each referring to one
of its nodes; this, considering the density uniform, means
to assign the same mass contribute to each node of the
tetrahedron. Obviously the lumped tetrahedron preserve, at
least in its undeformed configuration, the same barycentre of
the dense one.

mi =
1

4

∑
t∈Ωi

ρt V (t) (2)

In (2) Ωi is the set of tetrahedra sharing the node i
(Fig. 2(c)), while ρt and V (t) are respectively the density
and volume of the tetrahedron t.

2) The Voronoi mass-lumping: Another very intuitive
approach is to associate each point in the space to the nearest
node, which means to determine the Voronoi tessellation of
the model volume using its nodes as the input set of points.
Given a set Ψ of nodes, the Voronoi division confers to each
node i a subdomain (volume cell) C(i, Ψ) whose points q
are nearer to i than to all the other nodes, and defined by:

C(i, Ψ) = {q ∈ R3 : L(q, i) < L(q, j),∀j ∈ Ψ − {i}} (3)

where L(q, i) represents the distance between the point q
and the position of the node i. Hence, the Voronoi diagram
defined in (3) can be easily computed for a tetrahedral model
redefining the cell:

C(i, Ψ) =
⋃
t∈Ωi

C(i, Ψt) (4)

where Ψt represents the set of nodes of the tetrahedron t.
In (4) the Voronoi cell C(i, Ψ) of the node i is defined

as the union of the cells, associated to the node i, computed
tessellating all the tetrahedra in Ωi (that are the tetrahedra
sharing the node i). Therefore, we can assign the appropriate
mass mi to each node i simply multiplying the volume of
its Voronoi cell C(i, Ψ) by the material density ρ:

mi =
∑
t∈Ωi

ρt V (C(i, Ψt)) (5)

where C(i, Ψt) is the cell associated to the node i and
related to the Voronoi tesselation of the tetrahedron t.
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TABLE I
VORONOI VS BARYCENTRIC MASS-LUMPINGS

Aspect Ratio 1.0 0.6 0.2

(V VOR
min − V BAR) / V BAR −0, 00% −50, 74% −74, 50%

(V VOR
max − V BAR) / V BAR +0, 00% +152, 23% +223, 48%

Table I shows a comparison between the barycentric and
Voronoi mass lumping techniques applied on the 4 nodes
of sample tetrahedra with different values of aspect ratio
(AR): in this case defined as the min solid angle of the
tetrahedron divided by the min solid angle of the regular
tetrahedron. Varying the tetrahedron shape, starting from
a regular tetrahedron and reducing its AR, an increasing
divergence of the Voronoi cell volume in respect to the
barycentric cell volume is highlighted. The comparison is
given as the percentage difference between the Voronoi cells
with min (V VOR

min ) and max (V VOR
max ) volume with respect to

the barycentric cell volume (V BAR).
The barycentric mass lumping takes into account only the

tetrahedron volume, whereas the Voronoi strategy considers
also its shape. Both techniques have been implemented, so
the appropriate method can be chosen case by case.

B. Springs Stiffness Parametrization

The modelling of spring stiffness in the description of
biological soft tissues requires a strong idealization: in most
cases, biological tissues have non linear, non homogeneous,
anisotropic, viscoelastic properties. Only considering linear
elastic homogeneous isotropic materials’ laws the tissue
behaviour can be associated to the Hooke’s spring law. This
states that the force generated by the spring connecting node
i and node j can be approximated by fij = −kij · vij ;
where vij is the displacement of the spring’s end from its
equilibrium position, fij is the elastic force exerted by the
spring, and kij is the constant spring stiffness coefficient.

It is clear that the stiffness coefficient kij of the spring
connecting node i and node j, should be mapped by the
stiffness tensor C that correlates strains ε and stresses σ in
σ = C · ε; if only the principal directions are considered,
this relation reduces to σ = E · ε where E is the Young’s
modulus, easily recoverable in literature.

Conceptually the spring stiffness should be proportional
both to the Young’s modulus and to the tetrahedron edge
length, and should map the stiffness of the material volume
surrounding the spring. Based on these concepts, we applied
Lloyd’s approach [12], that is an extention of the work of
Van Gelder to tetrahedral elements. The proposed method
compares a stiffness matrix derived from FEM formulation
with a springs network derived one, obtaining the formula

kij =
∑
t∈Ωij

2
√
2

25
lt E (6)

(a) (b) (c) (d)

Fig. 2. The cube model and its mass-spring network respectively in (a)
and (b): (c) highlights (in bright red) the tetrahedra shared by the red node-
vertex in (b), while (d) shows the tetrahedra (in bright blue) incident on the
blue spring-edge in (b).

where the spring coefficient connecting the vertices i and
j is computed considering the set Ωij of tetrahedra sharing
the ij edge (Fig. 2(d)). Instead of simply considering the
edge length lij , it is considered the fictitious length lt =
(V (t)(12/

√
2))

1
3 : computed as the edge length of a regular

tetrahedron with the same volume V (t) of the tetrahedron t,
as explained in [12].

Furthermore, dense organs are basically composed by an
internal section (that is the functional part, or parenchyma),
and an external capsule (namely the supportive framework,
or stroma). These two parts have specific biomechanical
properties, so being able to properly model each of them
is crucial [9]. Hence, we have decoupled the modeling of
the surface layer from the internal network of the MSDm
(Fig. 5(a)), allowing the automatic detection of the capsule
(and the parenchyma) and enabling the use of different
Young’s moduli. Moreover, the virtual model can be man-
ually configured to represent specific lesions with different
biomechanical properties in respect to the healthy tissue.

C. Dampers Coefficients Parametrization

Damping confers realism and stability to mechanical
systems. One of the most used [10] and straightforward
method in the determination of damping matrix D in (1) is
the Rayleigh formula [11]; this, in its simplest formulation
D = α M + β K, considers D as the sum of two different
weighted contributions: an inertial term proportional to the
mass whereas the second term is proportional to the stiffness
and tends to reduce the oscillations of the springs network
[21].

Even if some methods to calculate the two Rayleigh
parameters α and β have been proposed [2], very often a
modal analysis of the considered system is not feasible due to
the difficulties to properly test the organ damping parameters;
furthermore the interactions involved in a virtual surgical
procedure simulation do not require an accurate damping
tuning to obtain a realistic behaviour of the virtual anatomy.

For these reasons, it’s common practice to empirically tune
these parameters to visually fit the tissue behaviour.

III. IMPLEMENTATION

Our implementation relies on a custom MSDm, that is an
extension of that available from the CHAI 3D [4]. As already
stated, the structure of the deformable model is based on a
tetrahedral mesh, representing the volume of the target organ.
This was generated through a pipeline that takes in input
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(a) (b)

Fig. 3. The simulation system: on the left the logical diagram of the
simulator and on the right a photo during a test case.

a medical dataset (CT or MRI), generates a surface mesh
using segmentation techniques (Fig. 1(a)) and then, after an
optimization phase, creates the final volumetric representa-
tion as a tetrahedral mesh (Fig. 1(b)). This process requires
the usage of various software: a custom pipeline based on
ITK-SNAP [8] for the dataset segmentation, MeshLab [3] to
clean and optimize the surface model, NETGEN [20] for the
generation of the tetrahedral mesh and Autodesk R© Maya R©

for the texturing. Finally the resulting structure is stored in
our custom MSDm.

Once the network is defined, the tuning of nodes and
springs has to be applied; to do this we have extended
the MSDm adding edge-vertex and edge-tetrahedron topolo-
gies. The mass lumping has been implemented replacing
the standard barycentric approach with a Voronoi based
technique realized using Voro++ library [18] to compute the
Voronoi tessellation of the tetrahedra, as shown in (3) and
(4). Similarly, the springs properties have been evaluated
exploiting the edge-tetrahedron topology to determine the
volumes required to solve (6). At last the Rayleigh damping
coefficients α and β have been compressed in a single inertial
term applied to each node. Although this method requires
to extend again the MSDm with edge-vertex topology, it
improves the performance of the simulation.

The complete software simulation system is a multi-
threaded application providing visual and tactile feedback.
The graphic rendering is carried out using the CHAI 3D
scene graph for the virtual environment and the Nokia R© Qt R©

library for the user interface; while a secondary thread elab-
orates the dynamics, collision detection and force response
relying on the CHAI 3D funcionalities (Fig. 3(a)).

IV. RESULTS

In order to test the realism and physical plausibility of
the virtual simulation, it was decided to perform some
visual comparison tests between the virtual MSDm and real
material samples.

A. Test A: Agarose Sample

The first experiment was performed to evaluate the realism
of a global deformation: in this case a torque. We decided to
use a real agarose sample shaped in a rectangular prism (2 cm
× 5 cm × 10 cm, see Fig. 4(c)), and with similar mechanical
parameters typical of a in vivo human liver; while the virtual

(a) (b) (c)

Fig. 4. Visual comparison between the virtual model, both in wireframe
(a) and texturized (b) version, and the real (c) agarose phantom.

model was composed by approximately 400 nodes and 1400
tetrahedra (Fig. 4(a)).

Agarose is a linear polymer showing mechanical and
viscous characteristics similar to those of soft tissues, and
then it is considered a good substitute of real specimen, often
difficult to recover. In addition Luo et al. [13] demonstrated
that subsists a linear relationship between the percentual
concentration of agarose and the Young’s Modulus in the
range 1-5%, so the mechanical parameters can be easily
estimated. As Nava et al. [17] estimated Young’s Modulus
for an in vivo human liver as 20 kPa ca., so the regression
line in [13] was used to obtain the right concentration to
reach this stiffness, and this was found to be 2,64%.

Once mixed, the composite was warmed at 150 ◦C ca. for
about 45 minutes to reach a homogeneous solubility; it was
then poured into the mold and let rest until get back cold
and solid. Finally a torsion of both the virtual model and the
specimen is applied, fixing the top and bottom borders of
the virtual model to emulate the constraints imposed by the
user hands on the real agarose phantom (Fig. 4).

B. Test B: Bovine Liver Sample

The second test was carried out to visually examine a
local deformation: as the pressure of a finger on a biological
tissue. This time, we have decided to compare the virtual
model with a sample of a bovine liver.

The organ has been dissected in a rectangular prism (10 cm
× 10 cm × 30 cm), having part of the stroma on the upper
side (Fig. 5(c)). In this way, we have been able to test the
capsule-parenchyma modeling using a MSDm composed by
about 640 nodes and about 2600 tetrahedra (Fig. 5(a)).

The biomechanical properties of the bovine liver tissue
have been widely investigated in literature. Accordingly with
the studies of Shan et al. [22] and Hollenstein et al. [9],
we have chosen a Young’s Modulus of 20 kPa for the
parenchyma and 60 kPa for the stroma.

Lastly, we have applied a localized pressure on the vir-
tual and real samples. The visual comparison illustrated in
(Fig. 5) shows the realism of the deformation simulated,
highlighting the lack of a significant global deformation
component as it happens in the real scenario.

All the tests were performed on a consumer notebook:
Intel Core 2 Duo 2.60 GHz CPU with 4Gb RAM running
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(a) (b) (c)

Fig. 5. Visual comparison of a local deformation (white circle) between
the virtual model (b) and the real sample (c) of a bovine liver; image (a)
shows the structure of the MSDm, highlighting the stroma (blue) and the
parenchyma (red).

a 32bit Microsoft R© Windows Vista R©; using a Sensable R©

Phantom Omni R© device for the haptic feedback (Fig. 3(b)).
During the tests, the mesh loading (including the biome-
chanical parametrization of the MSDm) required only few
seconds whereas the graphic rendering was performed with
a frame rate of about 50 fps and the physic engine update
rate was stably over 1k iterations per second.

V. CONCLUSIONS AND FUTURE WORKS

This article presents a virtual model based on a parametri-
zation of biomechanical properties of dense human organs.
The model consists in a Mass-Spring-Damper model with
a tetrahedral structured network, in which nodes are char-
acterized by masses and damping coefficients, while links
(connecting node pairs) are described by spring stiffness
constants. These settings are retrieved from biomechanical
parameters (tissue density, internal and surface Young’s
Moduli), that can be obtained from literature, or from ex
vivo testing; while the network structure is derived from a
tetrahedral model of the organ.

Our formulation has proven to be a good tradeoff be-
tween an accurate physical description and the performance
required for an interactive simulation.

This approach will be applied for robotics surgery simu-
lation of the whole abdominal district [14].
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