
  

  

Abstract—The N200 speller is a novel brain-computer 
interface (BCI) paradigm utilizing the overt attention effects on 
motion onset visual evoked potentials (mVEP). However, the 
asynchronous performance of the N200 BCI has not been fully 
explored. In this paper, a novel algorithm was proposed, 
integrating the spatial profile of the visual speller to provide a 
more precise description of the mVEP responses. Most 
importantly, only control state data were used in the algorithm 
to train a classifier which can detect the non-control state 
effectively. Using offline recorded data, the asynchronous 
performance of the proposed algorithm was shown to be 
significantly better than that of a similar algorithm without 
using the spatial information. The proposed algorithm can be 
used for developing a practical, asynchronous N200 BCI system. 

I. INTRODUCTION 
he N200 speller is a recently developed 

brain-computer interface system, using motion-onset 
visual evoked potentials (mVEPs) as neural signals for 
translating user intention into device commands [1-2]. 
Similar to the visual speller used in the classical P300 speller 
proposed by Farwell and Donchin [3-4], a 6×6 virtual button 
matrix is employed in the N200 speller BCI for its high 
efficiency of locating the target virtual button. Instead of 
using flashing rows and columns for the target-related P300 
component, brief motions of chromatic visual objects were 
embedded in the 36 virtual buttons to evoke a motion-onset 
specific N200 component, which is the most prominent 
component of mVEPs. In the N200 speller paradigm, the 
users selected one virtual button by overtly attending to (i.e. 
gazing at) the chromatic moving bars appearing at the spatial 
location of the button. The motion stimuli corresponding to 
the target button elicited distinct mVEPs different from those 
of the non-target (unattended) buttons, which was the basis 
for BCI classification. 

mVEPs were believed to be generated from the extrastriate 
temporo-occipital and associated parietal cortical areas [5-6]. 
Compared with other types of visual evoked potentials (VEP), 
mVEPs have been shown to have low inter- and intra-subject 
variability [5, 7] and visual stimuli with relatively low 
contrast and luminance level is sufficient to evoke stable 
responses [5, 8-9]. Hereby, mVEP is a promising candidate 
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for building a practical BCI system since the 
above-mentioned advantages can result in less 
subject-specific calibration time, longer system stability, 
greater convenience to be integrated into other applications 
and less user fatigue. To date, the N200 speller has been 
reported to achieve a comparable target detection accuracy 
with that of the P300-speller [2] and an online N200 BCI 
integrated in a Google search system with 6 virtual buttons 
has been implemented [10]. 

However, previous reported N200 BCIs worked in a 
synchronous way, i.e. the user was always assumed to be in a 
control state. This can be problematic when the BCI system is 
used in daily situation: the users need the system to stay silent 
when they are resting, watching TV etc. Therefore, the 
non-control state has to be taken into account for developing 
a practical N200 BCI. In the past decades, numerous efforts 
have been made to develop algorithms for asynchronous 
P300 BCIs [13-15]. Although some of the algorithms for 
P300 BCIs can be applied in N200 BCIs as well, they didn’t 
fully explore the characteristics of mVEPs. To our knowledge, 
no such studies specifically for N200 BCIs have been 
reported.  

One important feature of mVEPs is that they are recordable 
up to about 50° in the periphery of the visual field [11] and 
they have a much lower amplitude decrease with retinal 
eccentricity compared with pattern-reversal VEPs [12]. 
Hence, the motion stimuli from the non-target (unattended) 
buttons in the 6×6 virtual button matrix will also elicit 
mVEPs but the amplitude of these responses will decrease 
with the physical distance between these buttons and the 
target button becoming larger. However, for most algorithms 
for P300 BCIs [13-15] as well as the previous algorithms 
used for N200 BCIs [1, 10], all the non-target responses were 
regarded as one class for classification, regardless of their 
physical distance to the target. Nevertheless, the spatial 
profile may provide useful information for BCI classification: 
the mVEPs evoked by the virtual button next to the target 
button are certainly larger in amplitude than the ones evoked 
by the virtual button further way from the target. By 
integrating this spatial profile of the N200 speller, better 
recognition of the control state is expected. More importantly, 
the non-control state can be detected better since having 
mVEPs responses fit for the spatial profile is a more strict 
criterion than simply judging whether one particular mVEP 
response is target or not. Another advantage by introducing 
the spatial profile is this new classifier is supposed to 
discriminate the control and non-control state data based on 
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how well the data fit the responses according to the spatial 
profile, thus no non-control state data were needed for 
training the classifier. 

In this paper, a two-layer algorithm considering the spatial 
profile of the N200 speller was proposed. A two-class 
classifier was constructed as the first layer to encode the 
spatial profile information in a feature space and a second 
six-class classifier was employed to identify which 
row/column the subject was attending to. The recognition of 
the non-control state was achieved by applying a 
probability-based threshold in the second classifier. 
Compared with a traditional classifier not using the spatial 
information, the proposed algorithm showed better 
classification accuracy for both the control and non-control 
state, on the same dataset. 

II. METHODS 

A. Data description 
An illustration of the N200 visual speller interface was 

shown in Fig. 1a. In each virtual button, a vertical bar with a 
height of 0.66° visual angle appeared (motion-onset) at the 
right border of a vacant rectangle and moved leftward at the 
velocity of 3.10°/s before it disappeared (motion offset), 
forming a brief motion stimulus. The entire process of onset, 
motion and offset took 140 ms. The stimulus onset 
asynchrony (SOA) between two motion stimuli was 200 ms. 
The motion stimuli in the virtual buttons appeared by 
row/column, with random color. One round of stimulus 
presentation consisted of 12 stimuli in a random sequence, 
corresponding to the six rows and six columns respectively. 

Ten healthy subjects (six male and four female, aged 20–28) 
participated in the experiment. Within each experiment block, 
they were instructed to overtly attend to one virtual button as 
the target for 15 rounds. All subjects completed two 
experiment sessions in an offline manner, each consisting of 6 
blocks with target buttons along the diagonal of the speller 
matrix from the upper left to the lower right corner. EEG data 
were acquired from 30 surface electrodes using a NeuroScan 
SynAmp II amplifier at the sampling rate of 200Hz. Please 
refer to Hong et al. [2] for more details on the experiment 
paradigm and the data acquisition. 

Selection of features such as channels, time windows was 
beyond the scope of this paper since we focused on the 
classification algorithm. Therefore, we used the same 
procedure as reported in the previous studies [2, 10, 16]: the 
EEG data were first segmented according to stimulus onset 
and downsampled to 20Hz. Data from channels P3, P7, O1 
between 100 and 500ms following the stimulus onset were 
used, resulting in a 27-dimension feature vector per stimulus. 
The selected channels have been reported previously to 
exhibit strong mVEP responses [2]. 

B. Problem formulation 
The data from the N200 speller are organized in an 

epoch-trial-block structure. Here an epoch is associated with 
one particular motion stimulus (presented in either row or 
column) and represents the EEG data in the corresponding 
time segment. The epochs are categorized into target epochs 
and non-target epochs, depending on the subject’s attention 
task. Within each round of stimulus presentation, the EEG 
data can be separated into a column trial and a row trial, each 
including 6 epochs, as depicted in Fig. 1b. By identifying the 
target epochs from both the column and row trials from the 
same round, the target virtual button can be located. 15 
continuously recorded column/row trials with the same 
attention task are defined as one block. Column trials and row 
trials were not discriminated in the proposed algorithm since 
they showed similar characteristics [2] and shared the same 
spatial profile. In the dataset described in II.A, each subject’s 
data consist of 12 blocks, 180 trials, and 2160 epochs. 1/6 of 
the epochs are target epochs. 

To exploit the spatial profile, a variable d in units of the 
distance between two nearby rows/columns is introduced to 
measure the physical distance between two rows or columns, 
i.e. the physical distance between column 2 and 6 is 4. Thus, 
the non-target epochs can be categorized into 5 types 
according to their d values. 

Considering the nice eccentricity effects of mVEPs [11], 
we hypothesize that the 6 epochs from the same trial will 
preserve a certain response structure when the user is in the 
control state, showing the largest mVEP amplitude (i.e. N200) 
for the target row/column and a decrease of the mVEPs with 
increasing physical distances (d) to the target. This response 

Fig. 1. (a) the N200 speller interface, note the index (1-6) for rows and columns; (b) Stimulus sequence of the N200 speller, where 1 denotes the 
presentation of motion stimuli from certain column/row and 0 denotes no stimuli. Epoch, trial, and round are defined in (b); (c) Procedure of the proposed 
algorithm. 
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structure is the spatial profile we seek to learn from the data. 
Accordingly, there are 6 trial types, each with distinct spatial 
profiles based on the series of d-values associated with their 
attention tasks, e.g. trials with row/column 1 as target contain 
the epochs with d={0, 1, 2, 3, 4, 5} (from left to right of the 
N200 speller interface) while trials with column 3 as target 
have epochs with d={2, 1, 0, 1, 2, 3} Trials without such a 
recognizable structure will be regarded as in the non-control 
state. 

With such a criterion, a more precise description of the 
brain status associated with the N200 speller was achieved. 
The procedure of the proposed algorithm was shown in Fig. 
1c. The details were described in the following sections. 

C. Encoding of the spatial profile in a feature space 
Overt attention resulted in larger amplitude responses of 

the N200 component of mVEPs. However, simply using the 
N200 component as the feature for classification might be 
problematic due to the intra- and inter-subject variability. To 
avoid such problems, a two-class classifier using support 
vector machine (SVM) was constructed to project the 
information from the spatial profile into a feature space. In 
contrast to the traditional methods where all the non-target 
epochs were used for training the classifier, we used only the 
features (27-dim vector as described in 2.1) from the 
non-target epochs with d=4/5 together with target epochs 
(d=0) as the input to the SVM classifier. For each testing 
epoch EX , the output of the classifier was further translated 

into (epoch-based) p-value ( Ep ), describing the probability 
of one particular epoch to be a target epoch.  
 

1( )E Layer Ep SVM X−=  (1)

By constructing the training dataset in this way, the epochs 
with d=1, 2, 3 (not used in training dataset) were expected to 
yield decreasing p-values with increasing d, preserving the 
spatial profile information. 

D. Trial-based classification 
After performing II.C, the EEG data from one trial were 

transformed into a 6-dimension feature vector, representing 
the p-values of the 6 epochs. A 6-class SVM classifier was 
employed for the classification of the 6 types of trials. Again, 
we obtain the probability output from the SVM classifier, 
resulting in 6 (trial-based) p-values per trial ( , 1,...,6k

Tp k = ), 
indicating how likely the given trial belonged to one trial type. 
One trial will be classified as in the non-control state when all 
the 6 trial-based p-values are below certain pre-defined 
threshold ( thrp ). 
 6 6
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E. Evaluation of the proposed algorithm 
To evaluate the performance of the proposed algorithm, a 

second algorithm following the same structure but without 
utilizing the spatial profile was implemented for comparison. 
Abbreviations SPA (spatial profile algorithm) and NSPA 
(non spatial profile algorithm) were used in the following text 
to denote these two algorithms.  NSPA also had a two-layer 
structure: in the first layer, all the non-target epochs 
regardless of their d to target, were used with target epochs to 
train the SVM model; in the second layer, a simple 
classification criterion was applied: trials with all 6 
epoch-based p-values below certain threshold will be 
regarded as non-control, otherwise the trials will be classified 
to the row/column epoch showing the largest epoch-based 
p-value. 

As there were no ‘non-control state’ data available from 
the dataset in use, a simulated dataset with 180 non-control 
trials was constructed for each subject by randomly 
concatenating 6 out of all his/her non-target epochs. 

To obtain a better signal-to-noise ratio, the epochs used for 
the algorithms were 3-epoch time averaged epochs from the 
original data. The first half of data were used to train the SVM 
models in the algorithms and classification accuracies from 
the second half of data were reported. A 5×5 fold cross 
validation procedure was employed to determine the 
hyperparameters in the SVM models. Matlab 7.5 (The 
Mathworks, USA), and libSVM [17] were used for data 
analysis. Linear kernel was adopted when using SVM. 

III. RESULTS 

A. Information of the spatial profile in the feature space 
Fig. 2 showed the averaged mVEP waveforms of different 

epochs categorized by the d values. For this subject, the N200 

 
Fig. 2.  The spatial profile of the mVEP response: (a) averaged mVEPs 
from electrode P7 of one representative subject, the waveforms 
corresponds to different epoch types, according to the d values; (b) 
Transformation of the epoch data into probability outputs.
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component which was the most important feature for 
classification, declined in amplitude with increasing d. A 
similar trend was also observed from the epoch-based 
p-values using SPA but not NSPA, indicating the spatial 
profile was preserved by the first layer classifier. 

B. Target classification accuracy 
We first calculated the target classification accuracy, 

defined as the proportion of trials in which the user’s 
intention was correctly recognized, without considering the 
non-control dataset. Although SPA used a trial (6 epochs) 
instead of a single epoch for classification, performance 
comparable to that of NSPA was achieved (p>0.1, column 
ACCURACY, Table I), indicating the effectiveness of SPA 
in target classification. 

C. Asynchronous performance 
To show the general performance of SPA without a 

subjectively selection of threshold, a receiver operating 
characteristic (ROC) curve was drawn and the area under the 
ROC curve was calculated as an index for the performance by 
sweeping over p-value from 0 to 1. Area of ROC closer to 1 
corresponds to better asynchronous performance. Fig. 3 
depicted the ROC curve from subject No. 8, with ROC area of 
0.60 using NSPA and 0.92 using SPA. Significant better 

performance was obtained by our proposed algorithm SPA, 
compared to NSPA (p<0.0001, paired t-test). 

IV. DISCUSSIONS AND CONCLUSIONS 
In this paper, a novel algorithm aiming at enhancing the 

asynchronous performance of the N200 speller was proposed. 
Utilizing the eccentricity effects of mVEPs, we got a better 
and more precise description of the brain responses to motion 
stimuli by integrating the spatial profile of the visual speller. 
Offline classification showed that 1) the proposed trial-based 
SPA acquired comparable target classification accuracies 
with that of the epoch-based NSPA, although a stricter 
criterion was applied; 2) more importantly, significantly 
better detection rate of the non-control state was obtained, 
without using non-control state data for training the classifier. 

The idea of doing classification based on trials instead of 
epochs could be useful for other BCI paradigms such as P300, 
since the epochs within one trial may correlate with each 
other. By exploring the relationship between these epochs, 
better detection of non-control state can be realized. 

As a next step, an online system will be implemented to 
validate the proposed algorithm using real non-control state 
data. Also, efforts will be devoted to optimizing the layout of 
the visual speller using SPA algorithm as a validation tool and 
this will in turn help improve the system performance. 
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TABLE I 
PERFORMANCE OF THE PROPOSED ALGORITHM(SPA) AND NSPA 

Subject ACCURACY (%) ROC 

 NSPA SPA NSPA SPA 
1 37.8 44.9 0.20 0.35 
2 95.5 92.3 0.69 0.88 
3 98.1 97.4 0.67 0.97 
4 77.0 69.2 0.54 0.57 
5 80.8 76.3 0.51 0.62 
6 80.1 74.4 0.55 0.64 
7 66.7 65.4 0.41 0.58 
8 93.0 92.3 0.60 0.92 
9 82.7 83.3 0.44 0.74 

10 69.2 66.0 0.40 0.56 
Mean 78.1 76.2 0.50 0.68 

 
Fig. 3.  ROC curve of subject No.8 using SPA and NSPA. 
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